
Java Database Programming with JDBC
(Publisher: The Coriolis Group)
Author(s): Pratik Patel
ISBN: 1576100561
Publication Date: 10/01/96

Search this book:

Go!

Introduction

Chapter 1—JDBC: Databases The Java Way!
What Is The JDBC?
The JDBC Structure
ODBC’s Part In The JDBC
Summary

Chapter 2—SQL 101
The Relational Model And SQL
Understanding The Basics
Putting It Into Perspective: Schema And Catalog
Introducing Keys
Using Multiple Tables And Foreign Keys
Data Definition Language
Declaring Domains
Performing Checks
Creating Tables
Manipulating Tables
Data Maintenance Language
Data Query Language
Coming Up Next

Chapter 3—Using JDBC Drivers
Quick Start Guide
Installing java.sql.*
Registering And Calling JDBC Drivers
The sql.drivers Property
There’s Always A Class For A Name
Just Do It
JDBC URL And The Connection
Using ODBC Drivers
Installing The JDBC-ODBC Bridge
Setting Up ODBC Drivers

http://www.itknowledge.com/reference/standard/1576100561/index.html
http://www.itknowledge.com/reference/standard/1576100561/ch01/001-006.html
http://www.itknowledge.com/reference/standard/1576100561/ch01/001-006.html
http://www.itknowledge.com/reference/standard/1576100561/ch01/006-012.html
http://www.itknowledge.com/reference/standard/1576100561/ch01/006-012.html
http://www.itknowledge.com/reference/standard/1576100561/ch01/006-012.html
http://www.itknowledge.com/reference/standard/1576100561/ch02/013-016.html
http://www.itknowledge.com/reference/standard/1576100561/ch02/013-016.html
http://www.itknowledge.com/reference/standard/1576100561/ch02/013-016.html
http://www.itknowledge.com/reference/standard/1576100561/ch02/013-016.html
http://www.itknowledge.com/reference/standard/1576100561/ch02/016-020.html
http://www.itknowledge.com/reference/standard/1576100561/ch02/016-020.html
http://www.itknowledge.com/reference/standard/1576100561/ch02/016-020.html
http://www.itknowledge.com/reference/standard/1576100561/ch02/016-020.html
http://www.itknowledge.com/reference/standard/1576100561/ch02/020-023.html
http://www.itknowledge.com/reference/standard/1576100561/ch02/020-023.html
http://www.itknowledge.com/reference/standard/1576100561/ch02/020-023.html
http://www.itknowledge.com/reference/standard/1576100561/ch02/023-025.html
http://www.itknowledge.com/reference/standard/1576100561/ch02/023-025.html
http://www.itknowledge.com/reference/standard/1576100561/ch02/025-030.html
http://www.itknowledge.com/reference/standard/1576100561/ch03/029-033.html
http://www.itknowledge.com/reference/standard/1576100561/ch03/029-033.html
http://www.itknowledge.com/reference/standard/1576100561/ch03/029-033.html
http://www.itknowledge.com/reference/standard/1576100561/ch03/033-037.html
http://www.itknowledge.com/reference/standard/1576100561/ch03/033-037.html
http://www.itknowledge.com/reference/standard/1576100561/ch03/033-037.html
http://www.itknowledge.com/reference/standard/1576100561/ch03/033-037.html
http://www.itknowledge.com/reference/standard/1576100561/ch03/037-042.html
http://www.itknowledge.com/reference/standard/1576100561/ch03/037-042.html
http://www.itknowledge.com/reference/standard/1576100561/ch03/037-042.html
http://www.itknowledge.com/reference/standard/1576100561/ch03/037-042.html

Summary

Chapter 4—The Interactive—SQL Applet
Your First JDBC Applet
The Blueprint
Getting A Handle On The JDBC Essentials: The
Complete Applet Source Code
The Look Of The Applet
Handling Events
Opening The Connection
No Guts, No Glory: Executing Queries And
Processing Results
Wrapping It Up
The HTML File That Calls The Applet
The Final Product
Coming Up Next

Chapter 5—Accessing ODBC Services Using
JDBC
Bridge Requirements
The Bridge Is Great, But...
The ODBC URL
JDBC To ODBC Calls: A Roadmap

Chapter 6—SQL Data Types In Java And ORM
Mapping SQL Data To Java
ResultSetMetaData
Understanding The Object Relation Model
Mapping A Table Into A Java Object
Summary

Chapter 7—Working With Query Results
A Basic Java Object For Storing Results
Showing The Results
Charting Your Data
Summary

Chapter 8—The IconStore Multimedia JDBC
Application
IconStore Requirements
Building The Database
Application Essentials
Writing The main Method

http://www.itknowledge.com/reference/standard/1576100561/ch03/037-042.html
http://www.itknowledge.com/reference/standard/1576100561/ch04/043-049.html
http://www.itknowledge.com/reference/standard/1576100561/ch04/043-049.html
http://www.itknowledge.com/reference/standard/1576100561/ch04/043-049.html
http://www.itknowledge.com/reference/standard/1576100561/ch04/049-053.html
http://www.itknowledge.com/reference/standard/1576100561/ch04/049-053.html
http://www.itknowledge.com/reference/standard/1576100561/ch04/049-053.html
http://www.itknowledge.com/reference/standard/1576100561/ch04/053-056.html
http://www.itknowledge.com/reference/standard/1576100561/ch04/056-060.html
http://www.itknowledge.com/reference/standard/1576100561/ch04/056-060.html
http://www.itknowledge.com/reference/standard/1576100561/ch04/056-060.html
http://www.itknowledge.com/reference/standard/1576100561/ch04/056-060.html
http://www.itknowledge.com/reference/standard/1576100561/ch04/060-062.html
http://www.itknowledge.com/reference/standard/1576100561/ch04/060-062.html
http://www.itknowledge.com/reference/standard/1576100561/ch04/060-062.html
http://www.itknowledge.com/reference/standard/1576100561/ch05/063-068.html
http://www.itknowledge.com/reference/standard/1576100561/ch05/063-068.html
http://www.itknowledge.com/reference/standard/1576100561/ch05/063-068.html
http://www.itknowledge.com/reference/standard/1576100561/ch05/063-068.html
http://www.itknowledge.com/reference/standard/1576100561/ch05/063-068.html
http://www.itknowledge.com/reference/standard/1576100561/ch05/068-071.html
http://www.itknowledge.com/reference/standard/1576100561/ch06/087-090.html
http://www.itknowledge.com/reference/standard/1576100561/ch06/087-090.html
http://www.itknowledge.com/reference/standard/1576100561/ch06/087-090.html
http://www.itknowledge.com/reference/standard/1576100561/ch06/091-092.html
http://www.itknowledge.com/reference/standard/1576100561/ch06/091-092.html
http://www.itknowledge.com/reference/standard/1576100561/ch06/091-092.html
http://www.itknowledge.com/reference/standard/1576100561/ch07/093-099.html
http://www.itknowledge.com/reference/standard/1576100561/ch07/093-099.html
http://www.itknowledge.com/reference/standard/1576100561/ch07/093-099.html
http://www.itknowledge.com/reference/standard/1576100561/ch07/099-104.html
http://www.itknowledge.com/reference/standard/1576100561/ch07/104-110.html
http://www.itknowledge.com/reference/standard/1576100561/ch08/111-115.html
http://www.itknowledge.com/reference/standard/1576100561/ch08/111-115.html
http://www.itknowledge.com/reference/standard/1576100561/ch08/111-115.html
http://www.itknowledge.com/reference/standard/1576100561/ch08/111-115.html
http://www.itknowledge.com/reference/standard/1576100561/ch08/115-122.html
http://www.itknowledge.com/reference/standard/1576100561/ch08/115-122.html

Establishing The Database Connection
Creating The Menu
Creating The Lists
Handling Events
Saving The Image
Summary

Chapter 9—Java And Database Security
Database Server Security
Rooting Out The Packet Sniffers
Web Server CGI Holes
Finding A Solution
Applet Security: Can I Trust You?
The Applet Security Manager
I’m A Certified Applet
Summary

Chapter 10—Writing Database Drivers
The JDBC Driver Project: SimpleText
SimpleText SQL Grammar
SimpleText File Format
The DriverManager
JDBC Exception Types
JDBC Data Types
Character Data: CHAR, VARCHAR, And
LONGVARCHAR
Exact Numeric Data: NUMERIC And DECIMAL
Binary Data: BINARY, VARBINARY, And
LONGVARBINARY
Boolean Data: BIT
Integer Data: TINYINT, SMALLINT, INTEGER, And
BIGINT
Floating-Point Data: REAL, FLOAT, And DOUBLE
Time Data: DATE, TIME, And TIMESTAMP
New Data Classes
Numeric
Date
Time
Timestamp
Native Drivers: You’re Not From Around Here, Are
Ya?
Implementing Interfaces
Tracing
Turning On Tracing

http://www.itknowledge.com/reference/standard/1576100561/ch08/115-122.html
http://www.itknowledge.com/reference/standard/1576100561/ch08/122-125.html
http://www.itknowledge.com/reference/standard/1576100561/ch08/122-125.html
http://www.itknowledge.com/reference/standard/1576100561/ch08/130-134.html
http://www.itknowledge.com/reference/standard/1576100561/ch08/134-138.html
http://www.itknowledge.com/reference/standard/1576100561/ch08/134-138.html
http://www.itknowledge.com/reference/standard/1576100561/ch09/139-144.html
http://www.itknowledge.com/reference/standard/1576100561/ch09/139-144.html
http://www.itknowledge.com/reference/standard/1576100561/ch09/139-144.html
http://www.itknowledge.com/reference/standard/1576100561/ch09/139-144.html
http://www.itknowledge.com/reference/standard/1576100561/ch09/139-144.html
http://www.itknowledge.com/reference/standard/1576100561/ch09/139-144.html
http://www.itknowledge.com/reference/standard/1576100561/ch09/144-146.html
http://www.itknowledge.com/reference/standard/1576100561/ch09/144-146.html
http://www.itknowledge.com/reference/standard/1576100561/ch09/144-146.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/147-152.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/147-152.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/147-152.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/147-152.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/147-152.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/152-155.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/155-159.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/155-159.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/155-159.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/155-159.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/155-159.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/155-159.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/155-159.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/155-159.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/155-159.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/155-159.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/159-163.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/159-163.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/159-163.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/159-163.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/159-163.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/163-167.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/163-167.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/163-167.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/167-171.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/171-175.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/171-175.html

Writing Tracing Information
Checking For Tracing
Data Coercion
Escape Clauses
Date, Time, And Timestamp
Scalar Functions
LIKE Predicate Escape Characters
Outer Joins
Procedures
The JDBC Interfaces
Driver
Connection
DatabaseMetaData
Statement
PreparedStatement
ResultSet
ResultSetMetaData
Summary

Chapter 11—Internet Database Issues:
Middleware
Connectivity Issues Involved With Database
Access
Advantages Of Middleware
Disadvantages Of Middleware
The Application Server: A Complete Example With
Code
The Client: A Complete Example With Code
Summary

Chapter 12—The JDBC API
Classes
public class Date
public class DriverManager
public class DriverPropertyInfo
public final class Numeric
public class Time
public class TimeStamp
public class Types
Interfaces
public interface CallableStatement
public interface Connection
public interface DatabaseMetaData
public interface Driver

http://www.itknowledge.com/reference/standard/1576100561/ch10/171-175.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/175-182.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/175-182.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/182-186.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/182-186.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/182-186.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/182-186.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/182-186.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/182-186.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/182-186.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/186-190.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/195-198.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/199-203.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/203-208.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/208-211.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/211-216.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/216-218.html
http://www.itknowledge.com/reference/standard/1576100561/ch10/216-218.html
http://www.itknowledge.com/reference/standard/1576100561/ch11/221-224.html
http://www.itknowledge.com/reference/standard/1576100561/ch11/221-224.html
http://www.itknowledge.com/reference/standard/1576100561/ch11/221-224.html
http://www.itknowledge.com/reference/standard/1576100561/ch11/221-224.html
http://www.itknowledge.com/reference/standard/1576100561/ch11/221-224.html
http://www.itknowledge.com/reference/standard/1576100561/ch11/221-224.html
http://www.itknowledge.com/reference/standard/1576100561/ch11/224-231.html
http://www.itknowledge.com/reference/standard/1576100561/ch11/224-231.html
http://www.itknowledge.com/reference/standard/1576100561/ch11/231-237.html
http://www.itknowledge.com/reference/standard/1576100561/ch11/237-240.html
http://www.itknowledge.com/reference/standard/1576100561/ch12/240-244.html
http://www.itknowledge.com/reference/standard/1576100561/ch12/240-244.html
http://www.itknowledge.com/reference/standard/1576100561/ch12/240-244.html
http://www.itknowledge.com/reference/standard/1576100561/ch12/240-244.html
http://www.itknowledge.com/reference/standard/1576100561/ch12/240-244.html
http://www.itknowledge.com/reference/standard/1576100561/ch12/240-244.html
http://www.itknowledge.com/reference/standard/1576100561/ch12/244-246.html
http://www.itknowledge.com/reference/standard/1576100561/ch12/246-250.html
http://www.itknowledge.com/reference/standard/1576100561/ch12/246-250.html
http://www.itknowledge.com/reference/standard/1576100561/ch12/246-250.html
http://www.itknowledge.com/reference/standard/1576100561/ch12/246-250.html
http://www.itknowledge.com/reference/standard/1576100561/ch12/246-250.html
http://www.itknowledge.com/reference/standard/1576100561/ch12/250-252.html
http://www.itknowledge.com/reference/standard/1576100561/ch12/263-266.html

public interface PreparedStatement
public interface ResultSet
public interface ResultSetMetaData
public interface Statement
Exceptions
public class DataTruncation
public class SQLException
public class SQLWarning
Appendix A
Appendix B
Appendix C
Appendix D
Index

Chapter 1
JDBC: Databases The Java Way!
The Internet has spurred the invention of several new technologies in client/server
computing—the most recent of which is Java. Java is two-dimensional: It’s a
programming language and also a client/server system in which programs are
automatically downloaded and run on the local machine (instead of the server machine).
The wide embrace of Java has prompted its quick development. Java includes Java
compilers, interpreters, tools, libraries, and integrated development environments (IDEs).
Javasoft is leading the way in the development of libraries to extend the functionality and
usability of Java as a serious platform for creating applications. One of these libraries,
called Application Programming Interfaces (APIs), is the Java Database Connectivity
API, or JDBC. Its primary purpose is to intimately tie connectivity to databases with the
Java language.

We’ll discuss the reasoning behind the JDBC in this chapter, as well as the design of the
JDBC and its associated API. The Internet, or better yet, the technologies used in the
operation of the Internet, are tied into the design of the JDBC. The other dominant design
basis for the JDBC is the database standard known as SQL. Hence, the JDBC is a fusion
of three discrete computer areas: Java, Internet technology, and SQL. With the growing
implementation of these Internet technologies in “closed” networks, called intranets, the
time was right for the development of Java-based enterprise APIs. In this book, intranet
and Internet are both used to describe the software technology behind the network, such
as the World Wide Web.

What Is The JDBC?

As I mentioned a moment ago, JDBC stands for Java Database Connectivity. What is this
JDBC besides a nifty acronym? It refers to several things, depending on context:

• It’s a specification for using data sources in Java
applets and applications.

http://www.itknowledge.com/reference/standard/1576100561/ch12/263-266.html
http://www.itknowledge.com/reference/standard/1576100561/ch12/263-266.html
http://www.itknowledge.com/reference/standard/1576100561/ch12/269-272.html
http://www.itknowledge.com/reference/standard/1576100561/ch12/269-272.html
http://www.itknowledge.com/reference/standard/1576100561/ch12/272-274.html
http://www.itknowledge.com/reference/standard/1576100561/ch12/272-274.html
http://www.itknowledge.com/reference/standard/1576100561/ch12/272-274.html
http://www.itknowledge.com/reference/standard/1576100561/ch12/272-274.html
http://www.itknowledge.com/reference/standard/1576100561/appendix-a.html
http://www.itknowledge.com/reference/standard/1576100561/appendix-b.html
http://www.itknowledge.com/reference/standard/1576100561/appendix-c.html
http://www.itknowledge.com/reference/standard/1576100561/appendix-d.html
http://www.itknowledge.com/reference/standard/1576100561/book-index.html

• It’s an API for using low-level JDBC drivers.
• It’s an API for creating the low-level JDBC drivers,
which do the actual connecting/transacting with data
sources.
• It’s based on the X/Open SQL Call Level Interface
(CLI) that defines how client/server interactions are
implemented for database systems.

Confused yet? It’s really quite simple: The JDBC defines every aspect of making data-
aware Java applications and applets. The low-level JDBC drivers perform the database-
specific translation to the high-level JDBC interface. This interface is used by the
developer so he doesn’t need to worry about the database-specific syntax when
connecting to and querying different databases. The JDBC is a package, much like other
Java packages such as java.awt. It’s not currently a part of the standard Java Developer’s
Kit (JDK) distribution, but it is slated to be included as a standard part of the general Java
API as the java.sql package. Soon after its official incorporation into the JDK and Java
API, it will also become a standard package in Java-enabled Web browsers, though there
is no definite timeframe for this inclusion. The exciting aspect of the JDBC is that the
drivers necessary for connection to their respective databases do not require any pre-
installation on the clients: A JDBC driver can be downloaded along with an applet!

The JDBC project was started in January of 1996, and the specification was frozen in
June of 1996. Javasoft sought the input of industry database vendors so that the JDBC
would be as widely accepted as possible when it was ready for release. And, as you can
see from this list of vendors who have already endorsed the JDBC, it’s sure to be widely
accepted by the software industry:

• Borland International, Inc.
• Bulletproof
• Cyber SQL Corporation
• DataRamp
• Dharma Systems, Inc.
• Gupta Corporation
• IBM’s Database 2 (DB2)
• Imaginary (mSQL)
• Informix Software, Inc.
• Intersoft
• Intersolv
• Object Design, Inc.
• Open Horizon
• OpenLink Software
• Oracle Corporation
• Persistence Software
• Presence Information Design
• PRO-C, Inc.
• Recital Corporation

• RogueWave Software, Inc.
• SAS Institute, Inc. ™
• SCO
• Sybase, Inc.
• Symantec
• Thunderstone
• Visigenic Software, Inc.
• WebLogic, Inc.
• XDB Systems, Inc.

The JDBC is heavily based on the ANSI SQL-92 standard, which specifies that a JDBC
driver should be SQL-92 entry-level compliant to be considered a 100 percent JDBC-
compliant driver. This is not to say that a JDBC driver has to be written for an SQL-92
database; a JDBC driver can be written for a legacy database system and still function
perfectly. As a matter of fact, the simple JDBC driver included with this book uses
delimited text files to store table data. Even though the driver does not implement every
single SQL-92 function, it is still a JDBC driver. This flexibility will be a major selling
point for developers who are bound to legacy database systems but who still want to
extend their client applications.

The JDBC Structure

As I mentioned at the beginning of this chapter, the JDBC is two-dimensional. The
reasoning for the split is to separate the low-level programming from the high-level
application interface. The low-level programming is the JDBC driver. The idea is that
database vendors and third-party software vendors will supply pre-built drivers for
connecting to different databases. JDBC drivers are quite flexible: They can be local data
sources or remote database servers. The implementation of the actual connection to the
data source/database is left entirely to the JDBC driver.

The structure of the JDBC includes these key concepts:

• The goal of the JDBC is a DBMS independent
interface, a “generic SQL database access framework,”
and a uniform interface to different data sources.
• The programmer writes only one database interface;
using JDBC, the program can access any data source
without recoding.

Figure 1.1 shows the architecture of the JDBC. The DriverManager class is used to open
a connection to a database via a JDBC driver, which must register with the
DriverManager before the connection can be formed. When a connection is attempted,
the DriverManager chooses from a given list of available drivers to suit the explict type
of database connection. After a connection is formed, the calls to query and fetch results
are made directly with the JDBC driver. The JDBC driver must implement the classes to
process these functions for the specific database, but the rigid specification of the JDBC

ensures that the drivers will perform as expected. Essentially, the developer who has
JDBC drivers for a certain database does not need to worry about changing the code for
the Java program if a different type of database is used (assuming that the JDBC driver
for the other database is available). This is especially useful in the scenario of distributed
databases.

Figure 1.1 The architecture of the JDBC.

The JDBC uses a URL syntax for specifying a database. For example, a connection to a
mSQL database, which was used to develop some of the Java applets in this book, is:
jdbc:msql://mydatabase.server.com:1112/testdb

This statement specifies the transport to use (jdbc), the database type (msql), the server
name, the port (1112), and the database to connect to (testdb). We’ll discuss specifying a
database more thoroughly in Chapter 3.

The data types in SQL are mapped into native Java types whenever possible. When a
native type is not present in Java, a class is available for retrieving data of that type.
Consider, for example, the Date type in the JDBC. A developer can assign a date field in
a database to a JDBC Date class, after which the developer can use the methods in the
Date class to display or perform operations. The JDBC also includes support for binary
large objects, or BLOB data types; you can retreive and store images, sound, documents,
and other binary data in a database with the JDBC. In Chapter 6, we’ll cover the SQL
data types and their mapping into Java/JDBC, as well object-relational mapping.

ODBC’s Part In The JDBC

The JDBC and ODBC share a common parent: Both are based on the same X/OPEN call
level interface for SQL. Though there are JDBC drivers emerging for many databases,
you can write database-aware Java programs using existing ODBC drivers. In fact,
Javasoft and Intersolv have written a JDBC driver—the JDBC-ODBC Bridge—that
allows developers to use exisiting ODBC drivers in Java programs. Figure 1.2 shows the
place of the JDBC-ODBC Bridge in the overall architecture of the JDBC. However, the
JDBC-ODBC Bridge requires pre-installation on the client, or wherever the Java program
is actually running, because the Bridge must make native method calls to do the
translation from ODBC to JDBC. This pre-installation issue is also true for JDBC drivers
that use native methods. Only 100 percent Java JDBC drivers can be downloaded across
a network with a Java applet, thus requiring no pre-installation of the driver.

Figure 1.2 ODBC in the JDBC model.

ODBC drivers function in the same manner as “true” JDBC drivers; in fact, the JDBC-
ODBC bridge is actually a sophisticated JDBC driver that does low-level translation to
and from ODBC. When the JDBC driver for a certain database becomes available, you
can easily switch from the ODBC driver to the new JDBC driver with few, if any,
changes to the code of the Java program.

Summary

The JDBC is not only a specification for using data sources in Java applets and
applications, but it also allows you to create and use low-level drivers to connect and
“talk” with data sources. You have now explored the JDBC architecture and seen how the
ODBC fits into the picture. The important concept to remember about the JDBC is that
the modular design of the JDBC interface allows you to change between drivers—hence
databases—without recoding your Java programs.

In the next chapter, we’ll take a step back to give you a quick primer on SQL, one of the
pillars of the JDBC. If you are already familiar with SQL-92, feel free to skip the chapter.
However, I think that you may find the chapter helpful in clarifying the SQL queries
performed in the sample JDBC programs we develop in this book.

Chapter 2
SQL 101
SQL—the language of database. This chapter’s primary purpose is to serve as a primer
on this data sublanguage. Although it would be impossible for me to cover the intricacies
of SQL in just one chapter, I do intend to give you a solid introduction that we’ll build on
in the remainder of this book. Because the JDBC requires that drivers support the ANSI
SQL-92 standard to be “JDBC compliant,” I’ll be basing this chapter on that standard.
SQL-92, which I’ll refer to as SQL, is based on the relational model of database
management proposed in 1970 by Dr. E.F. Codd; over time, SQL evolved into the full-
featured language it is today, and it continues to evolve with our ever-changing needs.

A JDBC driver doesn’t absolutely have to be SQL-92 compliant. The JDBC specification
states the following: “In order to pass JDBC compliance tests and to be called ‘JDBC
compliant, we require that a driver support at least ANSI SQL-92 Entry Level.” This
requirement is clearly not possible with drivers for legacy database management systems
(DBMS). The driver in these cases will not implement all of the functions of a
“compliant” driver. In Chapter 10, Writing JDBC Drivers, we develop the basics of a
JDBC driver that implements only some of the features of SQL, but is a JDBC driver
nonetheless.

We’ll start our exploration of SQL by discussing the relational model, the basis for SQL.
Then we’ll cover the essentials of building data tables using SQL. Finally, we’ll go into
the manipulation and extraction of the data from a datasource.

The Relational Model And SQL

Although SQL is based on the relational model, it is not a rigid implementation of it. In
this section, we’ll discuss the relational model as it pertains to SQL so we do not
obfuscate our discussion of this standard, which is central to the JDBC specification. As
part of its specification, the SQL-92 standard includes the definition of data types. We’ll
cover these data types, and how to map to Java, in Chapter 6, SQL Data Types in Java
and the ORM.

Understanding The Basics

The basic units in SQL are tables, columns, and rows. So where does the “relational”
model fit into the SQL units? Strictly speaking, in terms of the relation model, the
“relation” is mapped in the table: It provides a way to relate the data contained within the
table in a simple manner. A column represents a data element present in a table, while a
row represents an instance of a record, or entry, in a table. Each row contains one specific
value for each of the columns; a value can be blank or undefined and still be considered
valid. The table can be visualized, you guessed it, as a matrix, with the columns being the
vertical fields and the rows being the horizontal fields. Figure 2.1 shows an example table
that can be used to store information about a company’s employees.

Figure 2.1 An SQL table.

Before we push on, there are some syntax rules you need to be aware of:

• SQL is not whitespace sensitive. Carriage returns,
tabs, and spaces don’t have any special meaning when
executing queries. Keywords and tokens are delimited
by commas, when applicable, and parentheses are used
for grouping.
• When performing multiple queries at one time, you
must use semicolons to separate distinct queries.
• Queries are not case sensitive.

A word of caution: While the keywords are not case sensitive, the string values that are
stored as data in a table do preserve case, as you would expect. Keep this in mind when
doing string comparisons in queries.

Putting It Into Perspective: Schema And Catalog

Though you can stick all of your data into a single table, it doesn’t make sense logically
to do this all the time. For example, in our EMPLOYEE table shown previously, we
could add information about company departments; however, the purpose of the
EMPLOYEE table is to store data on the employees. The solution is for us to create
another table, called DEPARTMENT, which will contain information about the specific
departments in the company. To associate an employee with a department, we can simply
add a column to the EMPLOYEE table that contains the department name or number.
Now that we have employees and departments neatly contained, we can add another
table, called PROJECT, to keep track of the projects each employee is involved in. Figure
2.2 shows our tables.

Figure 2.2 The EMPLOYEE, DEPARTMENT, and PROJECT tables track employees
by department and project.

Now that you understand how to logically separate your data, it’s time to take our model
one step higher and introduce you to the schema/catalog relationship. The schema is a
higher-level container that is defined as a collection of zero or more tables, where a table
belongs to exactly one schema. In the same way, a catalog can contain zero or more
schemas. This abstract is a necessary part of a robust relational database management
system (RDBMS). The primary reason is access control: It facilitates who can read a
table, who can change a table, and even who can create or destroy tables. Figure 2.3
demonstrates this point nicely. Here we have added another table, called
CONFIDENTIAL. It contains the home address, home phone number, and salary of each
employee. This information needs to belong in a separate schema so that anyone who is
not in payroll cannot access the data, while allowing those in marketing to get the
necessary data to do their job.

Figure 2.3 The table, schema, and catalog relationship allows you to limit access to
confidential information.

Introducing Keys

As you can see in the previous example, we have purposely set up the three tables to link
to one another. The EMPLOYEE table contains a column that has the department number
that the employee belongs in. This department number also appears in the
DEPARTMENT table, which describes each department in the company. The
EMPLOYEE and CONFIDENTIAL tables are related, but we still need to add one
corresponding entry (row) in one table for each entry in the other, the distinction coming
from the employee’s number.

The link—employee number and department number—we have set up can be thought of
as a key. A key is used to identify information within a table. Each individual employee
or department should have a unique key to aid in various functions performed on the
tables. In keeping with the relational model, the key is supposed to be unique within the
table: No other entry in the table may have the same primary key.

A single column is sometimes enough to uniquely identify a row, or entry. However, a
combination of rows can be used to compose a primary key—for example, we might
want to just use the combination of the title and city location of a department to comprise
the primary key. In SQL, columns defined as primary keys must be defined. They cannot
be “undefined” (also known as NULL).

Using Multiple Tables And Foreign Keys

As we have shown, it’s best to split data into tables so that the data contained within a
table is logically associated. Oftentimes, the data will belong logically in more than one
table, as is the case of the employee number in the EMPLOYEE and CONFIDENTIAL
tables. We can further define that if a row in one table exists, a corresponding row must
exist in another table; that is, we can say that if there is an entry in the EMPLOYEE table,
there must be a corresponding entry in the CONFIDENTIAL table. We can solidify this
association with the use of foreign keys, where a specific column in the dependent table
matches a column in a “parent” table. In essence, we are linking a “virtual” column in
one table to a “real” column in another table. In our example database, we link the
CONFIDENTIAL table’s employee number column to the employee number column in
the EMPLOYEE table. We are also specifying that the employee number is a key in the
CONFIDENTIAL table (hence the term foreign key). A composite primary key can
contain a foreign key if necessary.

We can create a logical structure to our data using the concept of a foreign key. However,
in preparation, you’ll have to put quite a bit of thought into creating your set of tables; an
efficient and planned structure to the data by way of the tables and keys requires good
knowledge of the data that is to be modeled. Unfortunately, a full discussion on the
techniques of the subject is beyond the scope of this book. There are several different
ways to efficiently model data; Figure 2.4 shows one visualization of the database we
have created. The SQL queries we perform in the examples of this book are not very
complex, so the information outlined in this section should suffice to convey a basic
understanding of the example databases created throughout the following chapters.

Figure 2.4 E-R diagram of relationships between tables.

Data Definition Language

Now that we have outlined the basic foundation of SQL, let’s write some code to
implement our database. The formal name for the language components used to create
tables is Data Definition Language, or DDL. The DDL is also used to drop tables and
perform a variety of other functions, such as adding and deleting rows (entries) from a
table, and adding and deleting columns from a table. I’ll show you some of these along
the way.

Declaring Domains

One of the handy shortcuts that the DDL offers is a way to create predefined data objects.
Though we haven’t really talked about the data types available in SQL, you can probably
guess the common ones like integer, character, decimal (floating point), date, etc.
Domains allow you to declare a data type of specific length and then give the declared
type a name. This can come in handy if you have numerous data columns that are of the
same data type and characteristics. Here’s the SQL statement you use to declare a
domain:
CREATE DOMAIN EMP_NUMBER AS CHAR(5)

Tip: Smart domain declaration habits.
When you are actually creating or altering tables, this
domain can be used instead of specifying CHAR(20) each
time. There are a number of reasons why this is good
practice. Notice that we chose to make EMP_NUMBER a
domain. This is a column that appears in several tables.

If we mistakenly use the wrong type or length in one of the table definitions where we
have employee numbers, it could cause havoc when running SQL queries. You’ll have to
keep reading to find out the other reason.

Performing Checks

Predefining a data object is also useful for making sure that a certain entry in a column
matches the data we expect to find there. For example, our empno field should contain a
number. If it doesn’t, performing a check of that data will alert us to the error. These
checks can exist in the actual table definition, but it’s efficient to localize a check in a
domain. Hence, we can add a check to our employee number domain:
CREATE DOMAIN EMP_NUMBER AS CHAR(5) CHECK (VALUE IS NOT NULL);

Now our domain automatically checks for any null entries in columns defined as
EMP_NUMBER. This statement avoids problems that crop up from non-existent entries,
as well as allowing us to catch any rogue SQL queries that add an incorrect (those that do
not set the employee number) entry to the table.

Creating Tables

Creating a table in SQL is really pretty easy. The one thing you need to keep in mind is
that you should define the referenced table, in this case EMPLOYEE, before defining the
referencing table, CONFIDENTIAL. The following code creates the EMPLOYEE table
shown in Figure 2.2:
CREATE TABLE EMPLOYEE
(
empno CHAR(5) PRIMARY KEY,
lastname VARCHAR(20) NOT NULL,
firstname VARCHAR(20) NOT NULL,
function VARCHAR(20) NOT NULL,
department VARCHAR(20)
);

We also could have easily incorporated the domain that we defined earlier into the
creation of the table, as shown here:
CREATE DOMAIN EMP_NUMBER AS CHAR(5) CHECK (VALUE IS NOT NULL);

CREATE TABLE EMPLOYEE
(
empno EMP_NUMBER PRIMARY KEY,
lastname VARCHAR(20) NOT NULL,
firstname VARCHAR(20) NOT NULL,
function VARCHAR(20) NOT NULL,
department VARCHAR(20)
);

I can hear you now, “What’s this VARCHAR data type?” SQL has two defined string
types: CHAR and VARCHAR. The RDBMS allocates exactly the amount of space you
specify when you use a CHAR data type; when you set an entry that is defined as a
CHAR(N) to a string smaller than the size of N, the remaining number of characters is set
to be blank. On the other hand, VARCHAR simply stores the exact string entered; the
size you have specified is strictly a limit on how big the entered value can be.

We also see the NOT NULL directive again, which institutes the check on the specific
column entry. We discussed primary and foreign keys earlier, now let’s see how we
actually implement them. Note that you should define the referenced table before
defining the referencing table.

Now it’s time to create the CONFIDENTIAL table. This table uses the empno attribute of
the EMPLOYEE table as its primary key, via the REFERENCES keyword.
CREATE DOMAIN EMP_NUMBER AS CHAR(5) CHECK (VALUE IS NOT NULL);

CREATE TABLE CONFIDENTIAL
(
empno EMP_NUMBER PRIMARY KEY,

homeaddress VARCHAR(50),
homephone VARCHAR(12),
salary DECIMAL,
FOREIGN KEY (empno) REFERENCES EMPLOYEE (empno)
)

We have tied the empno field in the CONFIDENTIAL table to the empno field in the
EMPLOYEE table. The fact that we used the same name, empno, is a matter of choice
rather than a matter of syntax. We could have named the empno field whatever we
wanted in the CONFIDENTIAL table, but we would need to change the first field
referred to in the FOREIGN KEY declaration accordingly.

Manipulating Tables

Database management often requires you to make minor modifications to tables.
However, careful planning can help you keep these alterations to a minimum. Let’s begin
by dropping, or removing, a table from a database:
DROP TABLE EMPLOYEE;

This is all we have to do to remove the EMPLOYEE table from our database. However,
if the table is referenced by another table, as is the case with the CONFIDENTIAL table,
a RDBMS may not allow this operation to occur. In this situation, you would have to
drop any referencing tables first, and then rebuild them without the referencing.

Altering a table definition is as straightforward as dropping a table. To remove a column
from a table, issue a command like this:
ALTER TABLE EMPLOYEE
DROP firstname;

Of course, if this column is part of the table’s key, you won’t be able to remove it. Also,
if the column is referenced by another table, or there is another column in any table that is
dependent on this column, the operation is not allowed.

To add a column to a table, run a query like this:
ALTER TABLE CONFIDENTIAL
ADD dateofbirth DATE NOT NULL;

You can also make multiple “alterations” at one time with the ALTER clause.

Data Maintenance Language

The subset of commands for adding, removing, and changing the data contained in tables
is the Data Maintenance Language (DML). As pointed out earlier, the data is manifest in
the form of rows. So, basically, DML performs row-based operations. Let’s see how this
works by inserting an entry (row) in the EMPLOYEE table:
INSERT INTO EMPLOYEE
VALUES (
'00201',
'Pratik',
'Patel',

'Author',
''
);

Here we have inserted the appropriate information in the correct order into the
EMPLOYEE table. To be safe, you can specify which field each of the listed tokens goes
into:
INSERT INTO EMPLOYEE (empno, lastname, firstname, function, department)
VALUES (
'00201', 'Pratik', 'Patel', 'Author', ''
);

If you don’t want to add all the fields in the row, you can specify only the fields you wish
to add:
INSERT INTO EMPLOYEE (empno, lastname, firstname, function)
VALUES (
'00201', 'Pratik', 'Patel', 'Author'
);

As you can see, I chose not to add anything in the department field. Note that if a field’s
check constraint is not met, or a table check is not met, an error will be produced. For
example, if we did not add something under the firstname field, an error would have been
returned because we defined the table’s firstname column check as NOT NULL. We did
not set up a check for the department field, so the previous command would not produce
an error.

To delete a table’s contents without removing the table completely, you can run a
command like this:
DELETE FROM EMPLOYEE;

This statement will wipe the table clean, leaving no data in any of the columns, and,
essentially, deleting all of the rows in the table. Deleting a single entry requires that you
specify some criteria for deletion:
DELETE FROM EMPLOYEE
WHERE empno='00201';

You can delete multiple rows with this type of operation, as well. If the WHERE clause
matches more than one row, all of the rows will be deleted. You can also delete multiple
entries by using the SELECT command in the WHERE clause; we will get to the
SELECT command in the next section.

If you really want to get fancy, you can use one statement to delete the same row from
more than one table:
DELETE FROM EMPLOYEE, CONFIDENTIAL
WHERE empno='00201';

The final command I want to cover in this section is UPDATE. This command allows
you to change one or more existing fields in a row. Here is a simple example of how to
change the firstname field in the EMPLOYEE table:
UPDATE EMPLOYEE
SET firstname = 'PR'
WHERE empno='00201';

We can set more than one field, if we wish, by adding more expressions, separated by
commas, like this:
UPDATE EMPLOYEE
SET firstname='PR', function='Writer'
WHERE empno='00201';

As you’ll see in the next section, the WHERE clause can take the form of a SELECT
query so that you can change multiple rows according to certain criteria.

Data Query Language

You have seen how to create your tables and add data to them, now let’s see how to
retrieve data from them. The SQL commands that you use to retrieve data from a table
are part of the Data Query Language (DQL). DQL’s primary command is SELECT, but
there are a host of predicates you can use to enhance SELECT’s flexibility and
specificity. Oftentimes, the key to understanding the process of querying is to think in
terms of mathematical sets. SQL, like all fourth-generation languages, is designed to pose
the question, “What do I want?” as opposed to other computer languages, like Java and
C++, which pose the question, “How do I do it?”

Let’s look at a set representation of our example database as shown in Figure 2.3. When
making queries, you’ll want to ask these questions:

• Where is the data located in terms of the table?
• What are the references?
• How can I use them to specify what I want?

Mastering SQL querying is not an easy task, but with the proper mind set, it is intuitive
and efficient, thanks to the relational model upon which SQL is based.

The syntax of the SELECT statement is shown here:
SELECT column_names
FROM table_names
WHERE predicates

Let’s take a look at the various functions of the SELECT command. To retrieve a
complete table, run this query:
SELECT * FROM EMPLOYEE;

To get a list of employees in the Editorial department, run this query:
SELECT * FROM EMPLOYEE
WHERE department = 'Editorial';

To sort the list based on the employees’ last names, use the ORDER BY directive:
SELECT * FROM EMPLOYEE
WHERE department= 'Editorial'
ORDER BY lastname;

To get this ordered list but only see the employee number, enter the following statements:
SELECT empno FROM EMPLOYEE

WHERE department = 'Editorial'
ORDER BY lastname;

To get a list of users with the name Pratik Patel, you would enter:
SELECT * FROM EMPLOYEE
WHERE (firstname='Pratik') AND (lastname='Patel');

What if we want to show two tables at once? No problem, as shown here:
SELECT EMPLOYEE.*, CONFIDENTIAL.*
FROM EMPLOYEE, CONFIDENTIAL;

Here’s a more challenging query: Show the salary for employees in the Editorial
department. According to our tables, the salary information is in the CONFIDENTIAL
table, and the department in which an employee belongs is in the EMPLOYEE table.
How do we associate a comparison in one table to another? Since we used the reference
of the employee number in the CONFIDENTIAL table from the EMPLOYEE table, we
can specify the employees that match a specified department, and then use the resulting
employee number to retrieve the salary information from the CONFIDENTIAL table:
SELECT c.salary
FROM EMPLOYEE as e, CONFIDENTIAL as c
WHERE e.department = 'Editorial'
 AND c.empno = e.empno;

We have declared something like a variable using the as keyword. We can now reference
the specific fields in the table using a “.”, just like an object. Let’s begin by determining
which people in the entire company are making more than $25,000:
SELECT salary
FROM CONFIDENTIAL
WHERE salary > 25000;

Now let’s see who in the Editorial department is making more than $25,000:
SELECT c.salary
FROM EMPLOYEE as e, CONFIDENTIAL as c
WHERE e.department = 'Editorial'
 AND c.empno = e.empno
 AND c.salary > 25000;

You can perform a number of other functions in SQL, including averages. Here’s how to
get the average salary of the people in the Editorial department:
SELECT AVG (c.salary)
FROM EMPLOYEE as e, CONFIDENTIAL as c
WHERE e.department = 'Editorial'
 AND c.empno = e.empno;

Of course, the possibilities with SQL exceed the relatively few examples shown in this
chapter. Because this book’s goal is to introduce the JDBC specifically, I didn’t use
complex queries in the examples. And now our discussion on SQL is complete. If you are
interested in learning more about SQL, I recommend that you check out our book’s
Website, where I have posted a list of recommended books on the topic of SQL and
distributed databases.

Coming Up Next

The next chapter begins our journey into JDBC. I’ll show you how to use JDBC drivers
for connecting to data sources. Then we’ll cover installing drivers, as well as the proper
way to use drivers that are dynamically fetched with an applet. Finally, we’ll discuss the
security restrictions of using directly downloaded drivers as opposed to locally installed
drivers.

Chapter 3
Using JDBC Drivers
As a developer who’s using the JDBC, one of the first things you need to understand is
how to use JDBC drivers and the JDBC API to connect to a data source. This chapter
outlines the steps necessary for you to begin that process. We’ll be covering the details of
getting JDBC drivers to work, as well as the driver registration process we touched on in
Chapter 1. We’ll also take some time to explore JavaSoft’s JDBC-ODBC Bridge, which
allows your Java programs to use ODBC drivers to call ODBC data sources.

Before our discussion gets underway though, I need to point out a few things about JDBC
drivers. First, there are no drivers packaged with the JDBC API; you must get them
yourself from software vendors. Check out this book’s Web site for links to demo
versions of drivers for your favorite database server, as well as free JDBC drivers
available on the Internet. Second, if you want to use ODBC, don’t forget that you’ll need
ODBC drivers, as well. If you don’t have a database server, but you want to use JDBC,
don’t despair: You can use the ODBC drivers packaged with Microsoft Access. Using the
JDBC-ODBC Bridge, you can write Java applications that can interact with an Access
database.

Unfortunately, applets enforce a security restriction that does not allow access to the local
disk, so ODBC drivers might not work in the applet context (inside a Web browser). A
future release of the Java Development Kit (JDK) may change or relax this security
restriction. A workaround for Java-enabled Web browsers is being prepared, and by the
time you read this, it may very well be possible to use the JDBC-ODBC bridge. Using
ODBC drivers in Java programs also requires pre-installation of the ODBC drivers and
JDBC-ODBC Bridge on the client machine. In contrast, JDBC drivers that are 100
percent Java class files can be downloaded dynamically over the network, along with the
calling applet’s class file. I’ll provide a more thorough discussion of this point in Chapter
9.

Quick Start Guide

So you’re a regular Java hacker, and you’ve already figured out how to install the JDBC
API package. Now you want to jump right into it. This section will outline the four basic
steps for running your first query and getting the results. The steps are explained in
greater detail in Chapter 4. Figure 3.1 is a diagram relating the four classes that you’ll call
on in your JDBC Java program, and it is the skeleton around which you can build
database-aware Java programs. The diagram does not list all of the methods available in
the respective classes. See Chapter 12, the JDBC API reference, for the complete class
and method list.

Figure 3.1 The JDBC classes to call.

The following (Listing 3.1) is a very simple JDBC application that follows these four
steps. It runs a query and gets one row from the returned result. If you don’t understand
everything going on here, don’t worry—it’s all explained in detail in Chapter 4.

Listing 3.1 Example JDBC application.
import java.net.URL;
import java.sql.*;

class Select {
 public static void main(String argv[]) {
 try {
 new imaginary.sql.iMsqlDriver();
 String url = "jdbc:msql://elanor.oit.unc.edu:1112/bcancer";
 Connection con = DriverManager.getConnection(url, "prpatel",
"");
 Statement stmt = con.createStatement();
 ResultSet rs = stmt.executeQuery("SELECT * FROM Users");
 System.out.println("Got results:");
 while(rs.next()) {

 String UID= rs.getString(1);
 String Password= rs.getString(2);
 String Last= rs.getString(3);
 String First= rs.getString(4);
 String OfficeID= rs.getString(5);

 System.out.print(UID +" "+ Password+"
 "+Last+" "+First+" "+OfficeID);
 System.out.print("\n");

 }
 stmt.close();
 con.close();
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 }
}

Installing java.sql.*

The java.sql.* package contains the JDBC base API classes, which are supposed to be

Installing java.sql.*

The java.sql.* package contains the JDBC base API classes, which are supposed to be in
the normal java.* hierachy that is distributed as part of the Java API (which includes the
java.awt, java.io, and java.lang packages). Currently, the JDBC API is not distributed
with the JDK, but it is slated to be included in the next release. I have a sneaking
suspicion that the java.sql.* package will also be included in the future APIs of popular
Java-enabled Web browsers.

However, you don’t have to wait for this updated software to be released. You can grab
the JDBC API classes from the accompanying CD-ROM or from the JavaSoft Web site at
http://splash.java.com/jdbc. As I was writing this chapter, the classes were stored in a file
named “jdbc.100.tar.Z.” By the time you read this chapter, however, the file name may
be slightly different. Once you have your software, simply follow these easy instructions
to install the API classes in the proper place on your computer’s hard disk. The method
shown here allows you to compile and run Java applications and applets (using the
Appletviewer) that use the JDBC:

1. Download the JDBC API package from the JavaSoft
Web site or make a copy of the file from the CD-ROM.
2. On your hard drive, locate the directory that stores
the Java API packages. (On my PC, the directory is
C:\JAVA\SRC, and on my Sun box, the directory is
\usr\local\java\src.) You do not need to install the
JDBC API package in the same directory as the rest of
the Java API, but I strongly recommend that you do
because, as I mentioned earlier, the JDBC API will soon
be a standard part of the Java API distribution and will
be packaged in the Java API hierarchy.
3. Unpack the JDBC API classes using one of the
following methods (for Unix-based machines or PCs),
substituting the location where you downloaded the
JDBC class file and the location where you want to
install the JDBC classes.
Unix Procedure:
• To upack the file, enter prompt> uncompress
\home\prpatel\jdbc.100.tar.Z.
• To create a jdbc directory with the classes and their
source in separate directories, enter prompt> tar xvf
\home\prpatel\jdbc.100.tar.Z.
• To install the JDBC classes, enter prompt> cd
\usr\local\java\src, then enter prompt> mv
\home\prpatel\jdbc\classes\java, and finally enter
prompt> mv \home\prpatel\jdbc\src\java.

http://splash.java.com/jdbc

Windows 95 Procedure:
• Using a Windows 95 ZIP utility such as WinZip,
uncompress and untar the file. Be sure the file name
ends with .tar when you uncompress the file so that
utilities will recognize the file. Untar the file to a
tempory folder. Then do the following:
• Copy the java folder from the JDBC\CLASSES
directory (from the temp directory where you untarred
the downloaded file) to the C:\JAVA\SRC directory.
• Copy the java folder from the JDBC\SRC directory to
C:\JAVA\SRC.
4. Set the CLASSPATH to point to c:/usr/local/java/src
(for Unix-based machines) or C:\JAVA\SRC (for PCs).
Again, remember to substitute your location if this is
not where you installed the downloaded file.

Tip: Save the API documentation.
The only item left from the JDBC package you downloaded
is the API documentation, which is in the jdbc\html
directory that was created when you untarred the
downloaded fi le. You may want to save that somewhere for
reference. You can view the fi le using a Web browser.

I must stress that you should make sure that you have the CLASSPATH set properly. The
package will be called in the following way in your Java program:
import java.sql.*

You need to point the CLASSPATH at the parent of the java directory you copied in Step
2, which is why we set the CLASSPATH in Step 3. The package is contained in the
java/sql/ folder, which is exactly as it should be according to the calling code snippet
above.

Registering And Calling JDBC Drivers

Now that we’ve installed the JDBC classes, let’s cover how you load a JDBC driver.
Note that the java.sql.* must be imported into your Java program if you want to use a
JDBC driver. These JDBC base classes contain the necessary elements for properly
instantiating JDBC drivers, and they serve as the “middleman” between you and the low-
level code in the JDBC driver. The JDBC API provides you with an easy-to-use interface
for interacting with data sources, independent of the driver you are using. The following
sections cover three different ways to tell the JDBC’s DriverManager to load a JDBC
driver.

The sql.drivers Property

When you want to identify a list of drivers that can be loaded with the DriverManager,
you can set the sql.drivers system property. Because this is a system property, it can be
set at the command line using the -D option:
java -Dsql.drivers=imaginary.sql.iMsqlDriver classname

If there is more than one driver to include, just separate them using colons. If you do
include more than one driver in this list, the DriverManager will look at each driver
once the connection is created and decide which one matches the JDBC URL supplied in
the Connection class’ instantiation. (I’ll provide more detail on the JDBC URL and the
Connection class later on.) The first driver specified in the URL that is a successful
candidate for establishing the connection will be used.

There’s Always A Class For A Name

You can explicitly load a driver using the standard Class.forName method. This
technique is a more direct way of instantiating the driver class that you want to use in the
Java program. To load the mSQL JDBC driver, insert this line into your code:
Class.forName("imaginary.sql.iMsqlDriver");

This method first tries to load the imaginary/sql/iMsqlDriver from the local
CLASSPATH. It then tries to load the driver using the same class loader as the Java
program—the applet class loader, which is stored on the network.

Just Do It

Another approach is what I call the “quick and dirty” way of loading a JDBC driver. In
this case, you simply instantiate the driver’s class. Of course, I don’t advise you to take
this route because the driver may not properly register with the JDBC DriverManager.
The code for this technique, however, is quite simple and worth mentioning:
new imaginary.sql.iMsqlDriver;

Again, if this is in the applet context, this code will first try to find this driver in the local
CLASSPATH, then it will try to load it from the network.

JDBC URL And The Connection

The format for specifying a data source is an extended Universal Resource Locator
(URL). The JDBC URL structure is broadly defined as follows
jdbc:<subprotocol>:<subname>

where jdbc is the standard base, subprotocol is the particular data source type, and
subname is an additional specification that can be used by the subprotocol. The subname
is based solely on the subprotocol. The subprotocol (which can be “odbc,” “oracle,” etc.)
is used by the JDBC drivers to identify themselves and then to connect to that specific
subprotocol. The subprotocol is also used by the DriverManager to match the proper
driver to a specific subprotocol. The subname can contain additional information used by
the satisfying subprotocol (i.e. driver), such as the location of the data source, as well as a

port number or catalog. Again, this is dependent on the subprotocol’s JDBC driver.
JavaSoft suggests that a network name follow the URL syntax:
jdbc:<subprotocol>://hostname:port/subsubname

The mSQL JDBC driver used in this book follows this syntax. Here’s the URL you will
see in some of the example code:
jdbc:msql://mycomputer.com:1112/databasename

The DriverManager.getConnection method in the JDBC API uses this URL when
attempting to start a connection. Remember that a valid driver must be registered with the
JDBC DriverManager before attempting to create this connection (as I discussed earlier
in the Registering and Calling JDBC Drivers section). The
DriverManager.getConnection method can be passed in a Property object where the
keys “user,” “password,” and even “server” are set accordingly. The direct way of using
the getConnection method involves passing these attributes in the constructor. The
following is an example of how to create a Connection object from the
DriverManager.getConnection method. This method returns a Connection object
which is to be assigned to an instantiated Connection class:
String url="jdbc:msql://mydatabaseserver.com:1112/databasename";
Name = "pratik";
password = "";
Connection con;
con = DriverManager.getConnection(url, Name, password);
// remember to register the driver before doing this!

Chapter 4 shows a complete example of how to use the DriverManager and Connection
classes, as well as how to execute queries against the database server and get the results.

Using ODBC Drivers

In an effort to close the gap between existing ODBC drivers for data sources and the
emerging pure Java JDBC drivers, JavaSoft and Intersolv released the JDBC-ODBC
Bridge. Note that there is a Java interface (hidden as a JDBC driver called
JdbcOdbcDriver and found in the jdbc/odbc/ directory below) that does the necessary
JDBC to ODBC translation with the native method library that is part of the JDBC-
ODBC bridge package. Although Chapter 5 covers the inner workings of the Bridge, I
would like to show you how to install it here. Once the Bridge is set up, the JDBC
handles access to the ODBC data sources just like access to normal JDBC drivers; in
essence, you can use the same Java code with either JDBC drivers or ODBC drivers that
use the Bridge—all you have to do is change the JDBC URL to reflect a different driver.

Installing The JDBC-ODBC Bridge

There are three steps to installing the JDBC-ODBC Bridge. You’ll need to get the
package first. Look on the CD-ROM, or grab the latest version from JavaSoft’s Web site
at http://splash.javasoft.com/jdbc.

1. Uncompress the package.

http://splash.javasoft.com/jdbc

2. Move the jdbc directory (located in the jdbc-
odbc/classes directory) into a directory listed in your
CLASSPATH, or move it to your regular Java API tree.
3. Move JdbcOdbc.dll into your java/bin directory to
make sure that the system and Java executables can
find the file. You can also:
For Unix:
• Add the path location of the JdbcOdbc.dll to your
LD_LIBRARY_PATH, or move the DLL into a directory
covered by this environment variable.

For Windows 95:
• Move the DLL into the \WINDOWS\SYSTEM directory.

Setting Up ODBC Drivers

The data sources for the ODBC driver and the drivers themselves must be configured
before you can run Java programs that access them. Consult your platform documentation
and ODBC server’s documentation for specific information.

One of the great features of the Bridge is that it allows you to use existing data sources to
start developing database-aware Java applications. And with Access, you don’t even need
a database server! In Chapter 11, I present the full source code for writing an application
server that can use the JDBC-ODBC Bridge, the Access ODBC drivers that come with
Access 95, and an Access database to develop Java applets that can interact with a
database without having a database server.

To set up an Access database for ODBC, follow these steps (I’m assuming that you are
using Windows 95):

1. Make sure you have the Access 95 ODBC drivers
installed. These ODBC drivers can be installed from the
Access install program.
2. Select Start Menu|Settings|Control Panels.
3. Click on 32 bit ODBC.
4. Click on the Add button and choose the Access
Driver.
5. Type in a Data Source Name and Description
(anything you like).
6. In the Database area, click on Select.
7. Select the Access database file; a sample database
is located in MSoffice\ACCESS\Samples (if you installed
it during the Access installation). However, you can
specify any Access database you want.
8. You may want to click on the Advanced button and
set the Username and Password. Click on OK and then
on Close to complete the configuration.

That is all you need to do to set up the ODBC data source. Now you can write Java
applications to interact with the data source on the machine in which you performed the
configuration; the ODBC driver is not directly accessible over the network. You can
access the data source by using the name you supplied in Step 5. For example, the URL
would be something like
jdbc:odbc:DataSourceName

and the statement
Class.forName("jdbc.odbc.JdbcOdbcDriver")

would load the JDBC-ODBC bridge.

Summary

The next chapter works through a complete example of using a JDBC driver. I use the
mSQL driver to query an mSQL database server over the network. The JDBC driver can
easily be changed to use an ODBC driver or another JDBC driver to connect to a
different data source.

Chapter 4
The Interactive
SQL Applet
Now that you have seen how to use JDBC drivers, it’s time we ante up. In this chapter,
we jump into the JDBC with an example applet that we’ll build on and derive from
through the rest of the book. Our Interactive Query applet will accomplish a number of
tasks. It will:

• Connect to a database server, using a JDBC driver
• Wait for a user to enter an SQL query for the
database server to process
• Display the results of the query in another text area

Of course, before we can get to the programming details of the applet, we need to take a
step back, review the basics, and put together a plan. I know, plans take time to develop,
and you want to get into the good stuff right away. But trust me, we’ll be saving
ourselves a lot of trouble later on by figuring out just the right way to get to where we
want to go.

Your First JDBC Applet

Our first step in creating a quality applet is understanding exactly what we need to do.
This section covers some applet basics, at a high level. We’ll begin by discussing the
functionality of the Interactive Query applet, and then we’ll explore how to fit the data-
aware components contained in the JDBC into the Java applet model. As I said before,
every great program starts with a well-thought-out plan, so we’ll work through the steps
to create one. If you are familiar with Java, take the time to at least review the following
section before moving on to Getting A Handle On The JDBC Essentials. However, if you

are unsure about what an applet really is, and why it’s different from a generic
application, you will want to read this section all the way through.

The Blueprint

The applet structure has a well-defined flow, and is an event-driven development. Let’s
begin by defining what we want the SQL query applet to do at a high level. First, we
want to connect to a database, which requires some user input: the database we want to
connect to, a user name, and, possibly, a password. Next, we want to let the user enter an
SQL query, which will then be executed on the connected data source. Finally, we need
to retrieve and display the results of the query. We’ll make this applet as simple as
possible (for now), so that you understand the details of using the JDBC API and have a
firm grasp of the foundations of making database-aware Java applets.

Our next task is to fill in some of the technical details of our plan. The absolute first thing
we need to do, besides setting up the constructors for the various objects we use, is design
and layout the user interface. We aren’t quite to that phase yet (remember, we’re still in
the planning phase), so we’ll defer the design details for a later section of this chapter,
The Look of the Applet.

We need to get some preliminary input from the user; we need to have some event
handlers to signal the applet that the user has entered some information that needs to be
processed, like the SQL query. Finally, we need to clean up when the applet is
terminated, like closing the connection to the data source.

Figure 4.1 shows the flow diagram for the applet. As you can see, we do most of our real
work in the Select method. The dispatcher is the event handler method, handleEvent().
We use several global objects so that we don’t have to pass around globally used objects
(and the data contained within). This approach also adds to the overall efficiency; the
code shows how to deal with some of the events directly in the event handler.

Figure 4.1 Flow diagram of the Interactive Query applet.

The Applet “Four-Step”

As indicated in Figure 4.2, Java applets have a distinct life cycle of four basic steps:
initialization, execution, termination, and clean up. It’s often unnecessary to implement
all four, but we can use them to our advantage to make our database-aware applet more
robust. Why does an applet have this flow? Applets run inside a Java Virtual Machine
(JVM), or Java interpreter, like the one embedded within a Java-enabled Web browser.
The interpreter handles the allocation of memory and resources for the applet, thus the
applet must live within the context of the JVM. This is a pre-defined specification of the

Java environment, designed to control the applet’s behavior. Note that Java applications
do not follow this life-cycle, as they are not bound to run in the context of Java applets.
Here’s a synopsis of what the four overridable methods, or steps, do in the context of
Java applets:

Figure 4.2 An applet’s life cycle.

• init This is the method called when the applet is first
started. It is only called once, and it is the place where
the initialization of objects (via construction or
assignment) should be done. It is also a good place to
set up the user interface.
• start Once the applet has been initialized, this
method is called to begin the execution of the applet. If
you are using threads, this is the ideal place to begin
threads that you create to use in the applet. This
method is called when the Web browser (or
appletviewer) becomes active; that is, when the user
brings up the window or focuses attention to the
window.
• stop This method is called when the applet window
(which can be within a Web browser) becomes inactive.
For instance, iconifying the Web browser calls this
method. This can be used to suspend the execution of
the applet when the user’s attention is somewhere else.
• destroy Before the applet is wiped from memory and
its resources returned to the operating system, this
method is called. This is a great place to flush buffers
and close connections, and generally to clean house.

As I said earlier, you don’t need to have all four steps in your applet. For instance, our
simple applet doesn’t need the start and stop methods. Because we aren’t running an
animation or any other CPU-consuming process continuously, we aren’t stealing many
precious system cycles. Besides, if you are connected to a database across the Internet
and execute a query that takes time to process and download the results from, you may
want to check your email instead of staring at the computer while the applet is working.
These methods are meant to be overriden, since a minimal “default” for each method
exists; the default depends on the individual intended function of the four methods.

Events To Watch For

The flow chart in Figure 4.1 shows some of the events we want to process. In this applet,
we are only looking for keystrokes and mouse clicks. We override the handleEvent
method to allow us to program for these events. We use the target property of the Event
object, which is passed into the event handler, to look for a specific object. Then we can
look for more specific events. Listing 4.1 contains a snippet of code that shows how we
deal with the user entering a name in the TextArea NameField.

Listing 4.1 Trapping for the Enter key event in a specific object.
if (evt.target == NameField)
 {char c=(char)evt.key;
 if (c == '\n')
 { Name=NameField.getText();
 return true;
 }
 else { return false; }
 }

The object evt is the local instantiation of the Event parameter that is part of the
handleEvent method, as we’ll see later in the complete source code listing. We use the
target property to see which object the event occurred in, then we look at the key
property to see if the Enter key was pressed. The Java escape sequence for Enter is \n.
The rest of the code shown in the listing is fairly straightforward: We compare the
pressed key to the “enter” escape sequence, and if we come up with a match, we set the
Name string variable to the text in the NameField using the TextArea getText method.
Because we have processed the event, and we want to let the rest of the event handler
know that we’ve dealt with it, we return true. If this wasn’t the key we were looking for
in this specific object (NameField), we would return false so that the other event handling
code could attempt to process this event.

Finishing Up

One of Java’s great strengths lies in its ability to automatically allocate and de-allocate
memory for objects created in the program, so the programmer doesn’t have to. We
primarily use the destroy method to close the database connection that we open in the
applet. The JDBC driver that we used to connect to the data source is alerted to the fact
that the program is exiting, so it can gracefully close the connection and flush input and
output buffers.

Getting A Handle On The JDBC Essentials: The Complete Applet Source
Code

Okay, enough talk, let’s get busy! The complete source code is shown in Listings 4.2
though 4.9. The HTML file that we use to call our applet is shown in Listing 4.10. I bet
you’re not too keen on entering all that code. But wait! There’s no need to type it all in,
just pull out the CD-ROM and load the source into your favorite editor or IDE. Don’t
forget, though, that you need to have the JDBC driver installed, and you may need your
CLASSPATH set so that the applet can find the driver. If you’re planning on loading the
driver as a class along with the applet, make sure you put the driver in the same place as

the applet. See Chapter 3 if you have trouble getting the applet to run and you keep
getting the “Can’t Find a Driver” or “Class not found” error.

Tip: Source code on the CD-ROM.
There’s no need to type in the source code because the
Interactive Query applet can be found on the CD-ROM, as
is true for all source code in this book.

The Look Of The Applet

As I promised earlier, we’re going to cover the details of user interface design and layout.
Listing 4.2 covers the initialization of the user interface, as well as the normal
“preliminaries” associated with Java programs. To help you along, I’ve included some
comments to elaborate on the fine points that will help you to understand what’s going on
and what we are doing.

Listing 4.2 Setting up the objects.
import java.net.URL;
import java.awt.*;
import java.applet.Applet;
// These are standard issue with applets, we need the net.URL
// class because the database identifier is a glorified URL.

import java.sql.*;
// These are the packages needed to load the JDBC kernel, known as the
// DriverManager.
import imaginary.sql.*;
// These are the actual driver classes! We are using the msql JDBC
// drivers to access our msql database.

public class IQ extends java.applet.Applet {
// This is the constructor for the base applet. Remember that the applet
// name must match the file name the applet is stored in--this applet
// should be saved in a file called "IQ.java".

 Button ConnectBtn = new Button("Connect to Database");
 TextField QueryField = new TextField(40);
 TextArea OutputField = new TextArea(10,75);
 TextField NameField = new TextField(40);
 TextField DBurl = new TextField(40);
 Connection con;
// Here we create the objects we plan to use in the applet.
// The Connection object is part of the JDBC API, and is the primary way
// of tying the JDBC's function to the applet.

 String url = "";
 String Name = "";

GridBagLayout: It’s Easier Than It Seems!

In Listing 4.2, we set up the objects we’ll be using in the user interface. We loaded the
necessary classes and the specific driver we will use in the applet. In Listing 4.3, we go
through the init phase of the applet, where we set up the user interface. We use

GridBagLayout, a Java layout manager, to position the components in the applet
window. GridBagLayout is flexible and offers us a quick way of producing an attractive
interface.

Listing 4.3 Setting up the user interface.
public void init() {
 QueryField.setEditable(true);
 OutputField.setEditable(false);
 NameField.setEditable(true);
 DBurl.setEditable(true);
// We want to set the individual TextArea and TextField to be editable
so
// the user can edit the OutputField, where we plan on showing the
// results of the query.

 GridBagLayout gridbag = new GridBagLayout();
 GridBagConstraints Con = new GridBagConstraints();
// create a new instance of GridBagLayout and the complementary
// GridBagConstraints.

 setLayout(gridbag);
// Set the layout of the applet to the gridbag that we created above.
 setFont(new Font("Helvetica", Font.PLAIN, 12));
 setBackground(Color.gray);
// Set the font and color of the applet.

 Con.weightx=1.0;
 Con.weighty=0.0;
 Con.anchor = GridBagConstraints.CENTER;
 Con.fill = GridBagConstraints.NONE;
 Con.gridwidth = GridBagConstraints.REMAINDER;

This code requires some explanation. The weightx and weighty properties determine
how the space in the respective direction is distributed. If either weight property is set to
0, the default, any extra space is distributed around the outside of the components in the
corresponding direction. The components are also centered automatically in that
direction. If either weight property is set to 1, any extra space is distributed within the
spaces between components in the corresponding direction. Hence, in setting the
weightx=1, we have told the GridBagLayout layout manager to position the
components on each row so that extra space is added equally between the components on
that row. However, the rows of components are vertically “clumped” together because
the weighty property is set to 0.0. Later on, we’ll change weighty to 1 so that the large
TextArea (the OutputField) takes up extra space equal to all the components added
before it. Take a look at Figure 4.3, shown at the end of the chapter, to see what I mean.

We also set the anchor property to tell the GridBagLayout to position the components
on the center, relative to each other. The fill property is set to NONE so that the
components are not stretched to fill empty space. You will find this technique to be useful
when you want a large graphics area (Canvas) to take up any empty space that is
available around it, respective to the other components. The gridwidth is set to

REMAINDER to signal that any component assigned the GridBagContstraint Con
takes up the rest of the space on a row. Similarly, we can set gridheight to
REMAINDER so that a component assigned this constraint takes up the remaining
vertical space. The last detail associated with GridBagLayout involves assigning the
properties to the component. This is done via the setConstraints method in
GridBagLayout.

Listing 4.4 shows how we do this. Notice that we assign properties for the TextArea, but
not for the Labels. Because we’re positioning the Labels on the “right” side of the screen
(the default), there is no need to assign constraints. There are more properties you can set
with GridBagLayout, but it’s beyond the scope of this book.

Listing 4.4 Assigning properties to components.
 add(new Label("Name"));
 gridbag.setConstraints(NameField, Con);
 add(NameField);
// Note that we did not setConstraints for the Label. The GridbagLayout
// manager assumes they carry the default constraints. The NameField is
// assigned to be the last component on its row via the constraints Con,
// then added to the user interface.

 add(new Label("Database URL"));
 gridbag.setConstraints(DBurl, Con);
 add(DBurl);

 gridbag.setConstraints(ConnectBtn, Con);
 add(ConnectBtn);
// Here, we only want the ConnectBtn button on a row, by itself, so we
// set the constraints, and add it.

 add(new Label("SQL Query"));
 gridbag.setConstraints(QueryField, Con);
 add(QueryField);

 Label result_label = new Label("Result");
 result_label.setFont(new Font("Helvetica", Font.PLAIN, 16));
 result_label.setForeground(Color.blue);
 gridbag.setConstraints(result_label, Con);
 add(result_label);
// Here we add a label on its own line. We also set the colors for it.

 Con.weighty=1.0;
 gridbag.setConstraints(OutputField, Con);
 OutputField.setForeground(Color.white);
 OutputField.setBackground(Color.black);
 add(OutputField);
// This is what we were talking about before. We want the large
OutputField to
// take up as much of the remaining space as possible, so we set the
// weighty=1 at this point. This sets the field apart from the
previously
// added components, and gives it more room to exist in.

 show();

 } //init

Everything has been added to the user interface, so let’s show it! We also don’t need to
do anything else as far as preparation, so that ends the init method of our applet. Now we
can move on to handling events.

Handling Events

We want to watch for four events when our applet is running: the user pressing the Enter
key in the DBurl, NameField, and QueryField TextAreas, and the user clicking on the
Connect button. Earlier in the chapter, we saw how to watch for events, but now we get
to see what we do once the event is trapped, as shown in Listing 4.5. The event handling
code is contained in the generic handleEvent method.

Listing 4.5 Handling events.
public boolean handleEvent(Event evt) {
// The standard format for this method includes the Event class where
// all the properties are set.

 if (evt.target == NameField)
 {char c=(char)evt.key;
// Look for the Enter key pressed in the NameField.
 if (c == '\n')
 { Name=NameField.getText();
// Set the global Name variable to the contents in the NameField.
 return true;
 }
 else { return false; }
 }

if (evt.target == DBurl)
 {char c=(char)evt.key;
// Look for the enter key pressed in the DBurl TextArea.
 if (c == '\n')
 { url=DBurl.getText();
// Set the global url variable to the contents of the DBurl TextArea.
 return true;
 }
 else { return false; }
 }

if (evt.target == QueryField)
 {char c=(char)evt.key;
// Look for the Enter key pressed in the QueryField.
 if (c == '\n')
 {
 OutputField.setText(Select(QueryField.getText()));
// Get the contents of the QueryField, and pass them to the Select
// method that is defined in Listing 4.7. The Select method executes the
// entered query, and returns the results. These results are shown in
the
// OutputField using the setText method.
 return true;
 }
 else { return false; }

 }

Opening The Connection

Our next step is to connect to the database that will process the user’s query, as shown in
Listing 4.6.

Listing 4.6 Opening a database connection.
if (evt.target == ConnectBtn)
 {
// If the user clicks the "Connect" button, connect to the database
// specified in the DBurl TextArea and the user name specified in the
// NameField TextArea.

 url=DBurl.getText();
 Name=NameField.getText();
 try {
 new imaginary.sql.iMsqlDriver();
// This creates a new instance of the Driver we want to use. There are a
// number of ways to specify which driver you want to use, and there is
// even a way to let the JDBC DriverManager choose which driver it
thinks
// it needs to connect to the data source.

 con = DriverManager.getConnection(url, Name, "");
// Actually make the connection. Use the entered URL and the entered
// user name when making the connection. We haven't specified a
password,
// so just send nothing ("").
 ConnectBtn.setLabel("Reconnect to Database");
// Finally, change what the ConnectBtn to show "Reconnect to Database".
 }
 catch(Exception e) {
 e.printStackTrace();
 OutputField.setText(e.getMessage());
 }
// The creation of the connection throws an exception if there was a
// problem connecting using the specified parameters. We have to enclose
// the getConnection method in a try-catch block to catch any
// exceptions that may be thrown. If there is a problem and an exception
// thrown, print it out to the console, and to the OutputField.

 return true;
 }
return false;
} // handleEvent() end

No Guts, No Glory: Executing Queries And Processing Results

Now that we have opened the connection to the data source (Listing 4.6), it’s time to set
up the mechanism for executing queries and getting the results, as shown in Listings 4.7
and 4.8. The parameter that we need in this method is a String containing the SQL query
the user entered into the QueryField. We will return the results of the query as a string

because we only want to pipe all of the results into the OutputField TextArea. We cast
all of the returned results into a String—however, if the database contains binary data, we
could get some weird output, or even cause the program to break. When I tested the
applet, the data source that I queried contained numerical and strings only. In Chapter 7,
I’ll show you how to deal with different data types in the ANSI SQL-2 specification,
upon which the data types for the JDBC are based.

Listing 4.7 Executing a statement.
public String Select(String QueryLine) {
// This is the method we called above in Listing 4.5.
// We return a String, and use a String parameter for the entered query.

 String Output="";
 int columns;
 int pos;
 try {
// Several of the following methods can throw exceptions if there was a
// problem with the query, or if the connection breaks, or if
// we improperly try to retrieve results.

 Statement stmt = con.createStatement();
// First, we instantiate a Statement class that is required to execute
// the query. The Connection class returns a Statement object in its
// createStatement method, which links the opened connection to
// the passed-back Statement object. This is how the stmt instance
// is linked to the actual connection to the data source.

 ResultSet rs = stmt.executeQuery(QueryLine);
// The ResultSet in turn is linked to the connection to the data source
// via the Statement class. The Statement class contains the
executeQuery
// method, which returns a ResultSet class. This is analagous to a
// pointer that can be used to retrieve the results from the JDBC
// connection.

 columns=(rs.getMetaData()).getColumnCount();
// Here we use the getMetaData method in the result set to return a
// Metadata object. The MetaData object contains a getColumnCount
// method which we use to determine how many columns of data
// are present in the result. We set this equal to an integer
// variable.

Listing 4.8 Getting the Result and MetaData Information.
 while(rs.next()) {
// Now, we use the next method of the ResultSet instance rs to fetch
// each row, one by one. There are more optimized ways of doing
// this--namely using the inputStream feature of the JDBC driver.
// I show you an example of this in Chapter 9.

 for(pos=1; pos<=columns; pos++) {
// Now let's get each column in the row (each cell), one by one.

 Output+=rs.getObject(pos)+" ";
// Here we've used the general method for getting a result. The
// getObject method will attempt to caste the result in the form

// of its assignee, in this case the String variable Output.
// We simply get each "cell" and add a space to it, then append it onto
// the Output variable.

 }
// End for loop (end looping through the columns for a specific row).

 Output+="\n";
// For each row that we fetch, we need to add a carriage return so that
// the next fetched row starts on the next line.
 }
// End while loop (end fetching rows when no more rows are left).

 stmt.close();
// Clean up, close the stmt, in effect, close the input-output query
// connection streams, but stay connected to the data source.
 }
 catch(Exception e) {
 e.printStackTrace();
 Output=e.getMessage();
 }
// We have to catch any exceptions that were thrown while we were
// querying or retrieving the data. Print the exception
// to the console and return it so it can be shown to the user
// in the applet.

return Output;
// Before exiting, return the result that we got.
 }

Wrapping It Up

The last part of the applet, shown in Listing 4.9, involves terminating the connection to
the data source. This is done in the destroy method of the applet. We have to catch an
exception, if one occurs, while the close method is called on the connection.

Listing 4.9 Terminating the connection.
public void destroy() {

 try {con.close();}
 catch(Exception e) {
 e.printStackTrace();
 System.out.println(e.getMessage());
 }
 } // end destroy
} // end applet

The HTML File That Calls The Applet

We need to call this applet from an HTML file, which is shown in Listing 4.10. We don’t
pass in any properties, but we could easily include a default data source URL and user
name that the applet would read in before initializing the user interface, and then set the
appropriate TextField to show these defaults. Note that we set the width and height
carefully in the <APPLET> tag. This is to make sure that our applet’s user interface has
enough room to be properly laid out.

Listing 4.10 HTML code to call the interactive query applet.
<HTML>
<HEAD>
<TITLE>JDBC Client Applet - Interactive SQL Command Util</TITLE>
</HEAD>
<BODY>
<H1>Interactive JDBC SQL Query Applet</H1>
<hr>

<applet code=IQ.class width=450 height=350>
</applet>

<hr>
</BODY>
</HTML>

The Final Product

Figure 4.3 shows a screen shot of the completed applet, and Figure 4.4 shows the applet
running. Not too shabby for our first try. We’ve covered a lot of ground in creating this
applet, so let’s take some time to recap the important details. We learned how to:

Figure 4.3 The completed Interactive Query applet.

Figure 4.4 The Interactive Query applet running.

• Open a connection to a data source
• Connect a Statement object to the data source via
the connection
• Execute a query
• Get MetaData information about the result of the
query
• Use the MetaData information to properly get the
results row-by-row, column-by-column
• Close the connection

To use the applet, you can load the HTML file in a Java-enabled Web browser, or you
can start the applet from the command line:
bash$ appletviewer IQ.html &

Don’t forget, if you have problems finding the class file or the driver, set the
CLASSPATH. See Chapter 3 for more help on this topic.

Coming Up Next

In the next chapter, we’ll explore the bridge between ODBC and JDBC. You’ll see how
easy it is to use existing ODBC drivers with JDBC, and learn some of the fine points of
the relation, similarity, and difference between the two database connectivity standards.
You won’t want to miss this one; the author, Karl Moss, is also the author of the
Sun/Intersolv ODBC-JDBC bridge included in the JDBC package.

Chapter 5
Accessing ODBC Services Using JDBC
One of JavaSoft’s first tasks in developing the JDBC API was to get it into the hands of
developers. Defining the API specification was a major step, but JDBC drivers must be
implemented in order to actually access data. Because ODBC has already established
itself as an industry standard, what better way to make JDBC usable by a large
community of developers than to provide a JDBC driver that uses ODBC. JavaSoft
turned to Intersolv to provide resources to develop a bridge between the two, and the
resulting JDBC driver—the Bridge—is now included with the Java Developer’s kit.

The Bridge works great, but there are some things you need to understand before you can
implement it properly. In this chapter, we’ll cover the requirements necessary to use the
Bridge, the limitations of the Bridge, and the most elegant way to make a connection to a
JDBC URL. I’ll also provide you with a list of each JDBC method and the corresponding
ODBC call (broken down by the type of call).

Bridge Requirements

One thing to note about the JDBC-ODBC Bridge is that it contains a very thin layer of
native code. This library’s sole purpose is to accept an ODBC call from Java, execute that
call, and return any results back to the driver. There is no other magic happening within
this library; all processing, including memory management, is contained within the Java
side of the Bridge. Unfortunately, this means that there is a library containing C code that
must be ported to each of the operating systems that the Bridge will execute on. This is
obviously not an ideal situation, and invalidates one of Java’s major advantages—
portability. So, instead of being able to download Java class files and execute on the fly,
you must first install and configure additional software in order to use the Bridge. Here’s
a short checklist of required components:

• The Java Developer’s Kit
• The JDBC Interface classes (java.sql.*)
• The JDBC-ODBC Bridge classes (jdbc.odbc.* or
sun.jdbc.odbc.* for JDBC version 1.1 and higher)

• An ODBC Driver Manager (such as the one provided
by Microsoft for Win95/NT); do not confuse this with
the JDBC DriverManager class
• Any ODBC drivers to be used from the Bridge (from
vendors such as Intersolv, Microsoft, and Visigenic)

Before actually attempting to use the Bridge, save yourself lots of headaches—be sure to
test the ODBC drivers that you will be using! I have pursued countless reported problems
that ended up being nothing more than an ODBC configuration issue. Make sure you
setup your data sources properly, and then test them to make sure you can connect and
perform work. You can accomplish this by either using an existing tool or writing your
own sample ODBC application. Most vendors include sample source code to create an
ODBC application, and Microsoft provides a tool named Gator (a.k.a ODBCTE32.EXE)
which can fully exercise ODBC data sources on Win95/NT.

The Bridge Is Great, But...

All looks good for the Bridge; it gives you access to any ODBC data source, and it’s free!
But wait, there are a few limitations that I need to make you aware of before you start.

First, as I mentioned before, a lot of software must be installed and configured on each
system that will be using the Bridge. In today’s environment, this feat cannot be
accomplished automatically. Unfortunately, this task can be a major limitation, not only
from the standpoint of getting the software installed and configured properly, but ODBC
drivers may not be readily available (or may be quite costly) for the operating system that
you are using.

Second, understand the limitations of the ODBC driver that you will be using. If the
ODBC driver can’t do it, neither can the Bridge. The Bridge is not going to add any value
to the ODBC driver that you are using other than allowing you to use it via JDBC. One of
the most frequently asked questions I get is: “If I use the Bridge, can I access my data
over the Internet?” If the ODBC driver that you are using can, then the Bridge can; if it
can’t, then neither can the Bridge.

Third, keep in mind the quality of the ODBC driver. In order for the Bridge to properly
use an ODBC driver, it must be ODBC version 2.0 or higher. Also, if there are bugs in
the ODBC driver, they will surely be present when you use it from JDBC.

Finally, there are Java security considerations. From the JDBC API specification, all
JDBC drivers must follow the standard security model, most importantly:

• JDBC should not allow untrusted applets access to
local database data
• An untrusted applet will normally only be allowed to
open a database connection back to the server from
which it was downloaded

For trusted applets and any type of application, the Bridge can be used in any fashion to
connect to any data source. For untrusted applets, the prognosis is bleak. Untrusted

applets can only access databases on the server from which they were downloaded.
Normally, the Java Security Manager will prohibit a TCP connection from being made to
an unauthorized hostname; that is, if the TCP connection is being made from within the
Java Virtual Machine (JVM). In the case of the Bridge, this connection would be made
from within the ODBC driver, outside the control of the JVM. If the Bridge could
determine the hostname that it will be connected to, a call to the Java Security Manager
could easily check to ensure that a connection is allowed. Unfortunately, it is not always
possible to determine the hostname for a given ODBC data source name. For this reason,
the Bridge always assumes the worst. An untrusted applet is not allowed to access any
ODBC data source. What this means is that if you can’t convince the Internet browser in
use that an applet is trusted, you can’t use the Bridge from that applet.

The ODBC URL

To make a connection to a JDBC driver, you must supply a URL. The general structure
of the JDBC URL is
jdbc:<subprotocol>:<subname>

where subprotocol is the kind of database connectivity being requested, and subname
provides additional information for the subprotocol. For the Bridge, the specific URL
structure is:
jdbc:odbc:<ODBC datasource name>[;attribute-name=attribute-value]...

The Bridge can only provide services for URLs that have a subprotocol of odbc. If a
different subprotocol is given, the Bridge will simply tell the JDBC DriverManager that
it has no idea what the URL means, and that it can’t support it. The subname specifies the
ODBC data source name to use, followed by any additional connection string attributes.
Here’s a code snippet that you can use to connect to an ODBC data source named
Accounting, with a user name of dept12 and a password of Julie:
// Create a new instance of the JDBC-ODBC Bridge.

new jdbc.odbc.JdbcOdbcDriver();

// The JDBC-ODBC Bridge will have registered itself with the JDBC
// DriverManager. We can now let the DriverManager choose the right
// driver to connect to the given URL.

Connection con = DriverManager.getConnection("jdbc:odbc:Accounting",
 "dept12", "Julie");

An alternative way of connecting to this same data source would be to pass the user name
and password as connection string attributes:
Connection con = DriverManager.getConnection("jdbc:odbc:Accounting;UID=
 dept12;PWD=Julie");

A third, more robust way of connecting would be to use a java.util.Properties object.
DriverManager.getConnection is overloaded to support three versions of the interface:
public static synchronized Connection getConnection(String url, String
 user, String password) throws SQLException;

public static synchronized Connection getConnection(String url);
public static synchronized Connection getConnection(String url,
 java.util.Properties info);

The third method listed here is by far the most elegant way of connecting to any JDBC
driver. An intelligent Java application/applet will use Driver.getPropertyInfo (which
will not be covered here) to get a list of all of the required and optional properties for the
driver. The Java program can then prompt the user for this information, and then create a
java.util.Properties object that contains an element for each of the driver properties to
be used for the JDBC connection. The following code shows how to setup the
java.util.Properties object:
// Create the Properties object.

java.util.Properties prop = new java.util.Properties();

// Populate the Properties object with each property to be passed to the
// JDBC driver.

prop.put("UID", "dept12");
prop.put("PWD", "Julie");

Connection con = DriverManager.getConnection("jdbc:odbc:Accounting",
 prop);

JDBC To ODBC Calls: A Roadmap

For all of you ODBC junkies, Tables 5.1 through 5.8 show each JDBC method and the
corresponding ODBC call (only JDBC methods that actually make an ODBC call are
included). I can hear you now: “But isn’t this a closely guarded national secret? What if
someone takes this information to write another Bridge?” First of all, the information
provided here can be easily gathered by turning on the JDBC logging facility
(DriverManager.setLogStream). The Bridge is nice enough to log every ODBC call as
it is made, providing a log stream has been set via the DriverManager (all good JDBC
drivers should provide adequate logging to aid in debugging). And second, the Bridge is
provided for free. No one could possibly take this information to create a better Bridge at
a lower price. It simply can’t be done. I provide this information in an effort to help you
better understand how the Bridge operates, and, if you are well versed in ODBC, to give
you the direct correlation between the Bridge and ODBC. This should enable you to write
advanced JDBC applications right off the starting line.

Table 5.1
Driver ODBC
calls. JDBC
Interface
Method
 ODBC Call Comments

connect SQLDriverConnect The Bridge creates a
connection string using the

java.util. Properties

attribute given

Each property returned is converted into a
DriverPropertyInfo object

Table 5.2 Connection
ODBC calls. JDBC
Interface Method
 ODBC Call Comments

prepareStatement SQLPrepare Prepares the
statement for use

with IN parameters

prepareCall SQLPrepare Prepares the
statement for use
with IN and OUT

parameters (JDBC has
not defined the use of

IN/OUT parameters
together)

nativeSQL SQLNativeSql Converts the given
SQL into native

format, expanding
escape sequences

setAutoCommit SQLSetConnectOption
fOption =

SQL_AUTOCOMMIT

getAutoCommit SQLGetConnectOption
fOption =

SQL_AUTOCOMMIT

commit SQLTransact fType = SQL_COMMIT

rollback SQLTransact
fType =

SQL_ROLLBACK

close SQLFreeConnect Frees the connection
handle associated

with the connection

setReadOnly SQLSetConnectOption fOption =
SQL_ACCESS_MODE;
this is only a hint to
the ODBC driver; the
underlying driver may

not actually change
its behavior

isReadOnly SQLGetConnectOption
fOption =

SQL_ACCESS_MODE

setCatalog SQLSetConnectOption fOption =
SQL_CURRENT_

QUALIFIER

getCatalog SQLGetInfo fInfoType =
SQL_DATABASE_NAME

setTransactionIsolation SQLSetConnectOption
fOption =

SQL_TXN_ISOLATION

getTransactionIsolation SQLGetConnectOption
fOption =

SQL_TXN_ISOLATION

setAutoClose

ODBC does not
provide a method to
modify this behavior

fInfoType = SQL_CURSOR_COMMIT_
BEHAVIOR and fInfoType = SQL_CURSOR_
ROLLBACK_BEHAVIOR; the Bridge makes both calls, and if either are
true, then getAutoClose returns true

Table 5.3 DatabaseMetaData
ODBC calls. JDBC Interface
Method
 ODBC Call Comments

allProceduresAreCallable SQLGetInfo fInfoType = SQL_ACCESSAB
PROCEDURES

allTablesAreSelectable SQLGetInfo fInfoType = SQL_ACCESSAB
TABLES

getUserName SQLGetInfo fInfoType = SQL_USER_NA

isReadOnly SQLGetInfo fInfoType = SQL_DATA_
SOURCE_READ_ONLY

nullsAreSortedHigh SQLGetInfo fInfoType =
SQL_NULL_COLLATION; res

must be SQL_NC_HIGH

nullsAreSortedLow SQLGetInfo fInfoType =
SQL_NULL_COLLATION; res

must be SQL_NC_LOW

nullsAreSortedAtStart SQLGetInfo fInfoType =

SQL_NULL_COLLATION; res
must be SQL_NC_START

nullsAreSortedAtEnd SQLGetInfo fInfoType =
SQL_NULL_COLLATION; res

must be SQL_NC_END

getDatabaseProductName SQLGetInfo fInfoType = SQL_DBMS_NA

getDatabaseProductVersion SQLGetInfo fInfoType = SQL_DBMS_VE

usesLocalFiles SQLGetInfo fInfoType = SQL_FILE_USAG
the result must be

SQL_FILE_QUALIFIER

usesLocalFilePerTable SQLGetInfo fInfoType = SQL_FILE_USAG
the result must be
SQL_FILE_TABLE

supportsMixedCaseIdentifiers SQLGetInfo fInfoType =
SQL_IDENTIFIER_CASE; th

result must be SQL_IC_UPP
SQL_IC_LOWER or

SQL_IC_MIXED

storesUpperCaseIdentifiers SQLGetInfo fInfoType =
SQL_IDENTIFIER_CASE, th

result must be SQL_IC_UPP

storesLowerCaseIdentifiers SQLGetInfo fInfoType =
SQL_IDENTIFIER_CASE; th

result must be SQL_IC_LOW

storesMixedCaseIdentifiers SQLGetInfo fInfoType =
SQL_IDENTIFIER_CASE; th

result must be SQL_IC_MIX

supportsMixedCaseQuoted
Identifiers

SQLGetInfo fInfoType =
SQL_QUOTED_IDENTIFIER_C

the result must be
SQL_IC_UPPER, SQL_IC_LOW

or SQL_IC_MIXED

storesUpperCaseQuoted
Identifiers

SQLGetInfo fInfoType =
SQL_QUOTED_IDENTIFIER_C

the result must be
SQL_IC_UPPER

storesLowerCaseQuoted
Identifiers

SQLGetInfo fInfoType =
SQL_QUOTED_IDENTIFIER_C

the result must be
SQL_IC_LOWER

storesMixedCaseQuoted
Identifiers

SQLGetInfo fInfoType =
SQL_QUOTED_IDENTIFIER_C

the result must be
SQL_IC_MIXED

getIdentifierQuoteString SQLGetInfo fInfoType =
SQL_IDENTIFIER_QUOTE_CH

getSQLKeywords SQLGetInfo fInfoType = SQL_KEYWORD

getNumericFunctions SQLGetInfo fInfoType =
SQL_NUMERIC_FUNCTIONS;
result is a bitmask enumera

the scalar numeric function
this bitmask is used to crea

comma-separated list of
functions

getStringFunctions SQLGetInfo fInfoType =
SQL_STRING_FUNCTIONS;

result is a bitmask enumera
the scalar string functions;

bitmask is used to create
comma-separated list of

functions

getSystemFunctions SQLGetInfo fInfoType = SQL_SYSTEM
FUNCTIONS; the result is

bitmask enumerating the sc
system functions; this bitma

used to create a comma-
separated list of function

getTimeDateFunctions SQLGetInfo fInfoType = SQL_TIMEDAT
FUNCTIONS; the result is

bitmask enumerating the sc
date and time functions; T
bitmask is used to create

comma-separated list of
functions

getSearchStringEscape SQLGetInfo fInfoType =
SQL_SEARCH_PATTERN_

ESCAPE

getExtraNameCharacters SQLGetInfo fInfoType = SQL_SPECIAL
CHARACTERS

supportsAlterTableWithAdd
Column

SQLGetInfo fInfoType = SQL_ALTER_TAB
result must have the

SQL_AT_ADD_COLUMN bit

supportsAlterTableWithDrop
Column

SQLGetInfo fInfoType =SQL_ALTER_TAB
the result must have the

SQL_AT_DROP_
COLUMN bit set

supportsColumnAliasing SQLGetInfo fInfoType = SQL_COLUMN_A

nullPlusNonNullIsNull SQLGetInfo fInfoType =
SQL_CONCAT_NULL_BEHAVI

the result must be SQL_CB_N

supportsConvert SQLGetInfo fInfoType = SQL_CONVERT
FUNCTIONS; the result must

SQL_FN_CVT_CONVERT

supportsTableCorrelation
Names

SQLGetInfo fInfoType = SQL_CORRELATI
NAME; the result must be

SQL_CN_
DIFFERENT or SQL_CN_AN

supportsDifferentTable
CorrelationNames

SQLGetInfo fInfoType = SQL_CORRELATI
NAMES; the result must b

SQL_CN_
DIFFERENT

supportsExpressionsIn
OrderBy

SQLGetInfo fInfoType = SQL_EXPRESSIO
IN_ORDER_BY

supportsOrderByUnrelated SQLGetInfo fInfoType = SQL_ORDER_B
COLUMNS_IN_SELECT

supportsGroupBy SQLGetInfo fInfoType = SQL_GROUP_BY;
result must not be

SQL_GB_NOT_
SUPPORTED

supportsGroupByUnrelated SQLGetInfo fInfoType = SQL_GROUP_BY;
result must be SQL_GB_NO

RELATION

supportsGroupByBeyond
Select

SQLGetInfo fInfoType = SQL_GROUP_BY;
result must be

SQL_GB_GROUP_BY_
CONTAINS_SELECT

supportsLikeEscapeClause SQLGetInfo fInfoType = SQL_LIKE_ESCA
CLAUSE

supportsMultipleResultSets SQLGetInfo fInfoType = SQL_MULT_RESU
SETS

supportsMultipleTransactions SQLGetInfo fInfoType = SQL_MULTIPLE
ACTIVE_TXN

supportsNonNullableColumns SQLGetInfo fInfoType = SQL_NON_
NULLABLE_COLUMNS; the re

must be SQL_NNC_NON_
NULL

supportsMinimumSQL
Grammar

SQLGetInfo fInfoType = SQL_ODBC_SQ
CONFORMANCE; result must

SQL_OSC_MINIMUM,
SQL_OSC_CORE, or

SQL_OSC_EXTENDED

supportsCoreSQLGrammar SQLGetInfo fInfoType = SQL_ODBC_
SQL_CONFORMANCE; the re

must be SQL_OSC_CORE o
SQL_OSC_EXTENDED

supportsExtendedSQL
Grammar

SQLGetInfo fInfoType = SQL_ODBC_
SQL_CONFORMANCE; the re

must be SQL_OSC_
EXTENDED

supportsIntegrityEnhancement
Facility

SQLGetInfo fInfoType = SQL_ODBC_SQ
OPT_IEF

supportsOuterJoins SQLGetInfo fInfoType = SQL_OUTER_JOI
the result must not be “N

supportsFullOuterJoins SQLGetInfo fInfoType = SQL_OUTER_JOI
the result must be “F”

supportsLimitedOuterJoins SQLGetInfo fInfoType = SQL_OUTER_JOI
the result must be “P”

getSchemaTerm SQLGetInfo fInfoType = SQL_OWNER_TE

getProcedureTerm SQLGetInfo
fInfoType =

SQL_PROCEDURE_TERM

getCatalogTerm SQLGetInfo
fInfoType =

SQL_QUALIFIER_TERM

isCatalogAtStart SQLGetInfo fInfoType = SQL_QUALIFIE
LOCATION; the result must

SQL_QL_START

getCatalogSeparator SQLGetInfo fInfoType =
SQL_QUALIFIER_NAME_

SEPARATOR

supportsSchemasInData SQLGetInfo fInfoType =

Manipulation SQL_OWNER_USAGE; the re
must have the SQL_OU_DM

STATEMENTS bit set

supportsSchemasInProcedure
Calls

SQLGetInfo fInfoType =
SQL_OWNER_USAGE; the re

must have the SQL_OU_
PROCEDURE_INVOCATION bi

supportsSchemasInTable
Definitions

SQLGetInfo fInfoType =
SQL_OWNER_USAGE; the re
must have the SQL_OU_TAB

DEFINITION bit set

supportsSchemasInIndex
Definitions

SQLGetInfo fInfoType =
SQL_OWNER_USAGE; the re
must have the SQL_OU_IND

DEFINITION bit set

supportsSchemasInPrivilege
Definitions

SQLGetInfo fInfoType =
SQL_OWNER_USAGE; the re

must have the SQL_OU_
PRIVILEGE_DEFINITION bit

supportsCatalogsInData
Manipulation

SQLGetInfo fInfoType =
SQL_QUALIFIER_USAGE; t

result must have the
SQL_QU_DML_STATEMENTS

set

supportsCatalogsInProcedure
Calls

SQLGetInfo fInfoType =
SQL_QUALIFIER_USAGE; t

result must have the SQL_Q
PROCEDURE_INVOCATION bi

supportsCatalogsInTable
Definitions

SQLGetInfo fInfoType = SQL_QUALIFIE
USAGE; the result must have
SQL_QU_TABLE_DEFINITION

set

supportsCatalogsInIndex
Definitions

SQLGetInfo fInfoType =
SQL_QUALIFIER_USAGE; t

result must have the
SQL_QU_INDEX_DEFINITION

set

supportsCatalogsInPrivilege
Definitions

SQLGetInfo fInfoType =
SQL_QUALIFIER_USAGE; t

result must have the SQL_Q
PRIVILEGE_DEFINITION bit

supportsPositionedDelete SQLGetInfo fInfoType = SQL_POSITIONE
STATEMENTS; the result m

have the
SQL_PS_POSITIONED_DELET

set

supportsPositionedUpdate SQLGetInfo fInfoType = SQL_POSITIONE
STATEMENTS; the result m

have the
SQL_PS_POSITIONED_UPDA

bit set

supportsSelectForUpdate SQLGetInfo fInfoType = SQL_POSITIONE
STATEMENTS; the result m

have the
SQL_PS_SELECT_FOR_UPDA

bit set

supportsStoredProcedures SQLGetInfo fInfoType = SQL_PROCEDUR

supportsSubqueriesIn
Comparisons

SQLGetInfo fInfoType = SQL_SUBQUERI
the result must have the

SQL_SQ_
COMPARISON bit set

supportsSubqueriesInExists SQLGetInfo fInfoType = SQL_SUBQUERI
the result must have the
SQL_SQ_EXISTS bit set

supportsSubqueriesInIns SQLGetInfo fInfoType = SQL_SUBQUERI
the result must have the

SQL_SQ_IN bit set

supportsSubqueriesIn
Quantifieds

SQLGetInfo fInfoType = SQL_SUBQUERI
the result must have the

SQL_SQ_
QUANTIFIED bit set

supportsCorrelatedSubqueries SQLGetInfo fInfoType = SQL_SUBQUERI
the result must have the

SQL_SQ_
CORRELATED_SUBQUERIES

set

supportsUnion SQLGetInfo fInfoType = SQL_UNION; t
result must have the
SQL_U_UNION bit set

supportsUnionAll SQLGetInfo fInfoType = SQL_UNION; t
result must have the

SQL_U_UNION_ALL bit se

supportsOpenCursors
Across Commit

SQLGetInfo fInfoType =
SQL_CURSOR_COMMIT_

BEHAVIOR; the result must
SQL_CB_PRESERVE

supportsOpenCursors
Across Rollback

SQLGetInfo fInfoType = SQL_CURSOR
ROLLBACK_BEHAVIOR; the re

must be SQL_CB_PRESERV

supportsOpenStatements
Across Commit

SQLGetInfo fInfoType = SQL_CURSOR
COMMIT_BEHAVIOR; the res
must be SQL_CB_PRESERVE

SQL_CB_CLOSE

supportsOpenStatements
Across Rollback

SQLGetInfo fInfoType = SQL_CURSOR
ROLLBACK_BEHAVIOR; the re

must be SQL_CB_PRESERVE
SQL_CB_CLOSE

getMaxBinaryLiteralLength SQLGetInfo fInfoType = SQL_MAX_BINA
LITERAL_LEN

getMaxCharLiteralLength SQLGetInfo fInfoType = SQL_MAX_CHA
LITERAL_LEN

getMaxColumnNameLength SQLGetInfo fInfoType = SQL_MAX_COLU
NAME_LEN

getMaxColumnsInGroupBy SQLGetInfo fInfoType =
SQL_MAX_COLUMNS_

IN_GROUP_BY

getMaxColumnsInIndex SQLGetInfo fInfoType =
SQL_MAX_COLUMNS_

IN_INDEX

getMaxColumnsInOrderBy SQLGetInfo fInfoType =
SQL_MAX_COLUMNS_

IN_ORDER_BY

getMaxColumnsInSelect SQLGetInfo fInfoType =
SQL_MAX_COLUMNS_

IN_SELECT

getMaxColumnsInTable SQLGetInfo fInfoType =
SQL_MAX_COLUMNS_

IN_TABLE

getMaxConnections SQLGetInfo fInfoType = SQL_ACTIVE_
CONNECTIONS

getMaxCursorNameLength SQLGetInfo fInfoType = SQL_MAX_CURS
NAME_LEN

getMaxIndexLength SQLGetInfo
fInfoType =

SQL_MAX_INDEX_SIZE

getMaxSchemaNameLength SQLGetInfo fInfoType = SQL_MAX_OWN
NAME_LEN

getMaxProcedureNameLength SQLGetInfo fInfoType = SQL_MAX_
PROCEDURE_NAME_LEN

getMaxCatalogNameLength SQLGetInfo fInfoType = SQL_MAX_
QUALIFIER_NAME_LEN

getMaxRowSize SQLGetInfo
fInfoType =

SQL_MAX_ROW_SIZE

doesMaxRowSizeIncludeBlobs SQLGetInfo fInfoType =
SQL_MAX_ROW_SIZE_

INCLUDES_LONG

getMaxStatementLength SQLGetInfo fInfoType = SQL_MAX_
STATEMENT_LEN

getMaxStatements SQLGetInfo fInfoType = SQL_ACTIVE_
STATEMENTS

getMaxTableNameLength SQLGetInfo fInfoType = SQL_MAX_TABL
NAME_LEN

getMaxTablesInSelect SQLGetInfo fInfoType = SQL_MAX_TABL
IN_SELECT

getMaxUserNameLength SQLGetInfo fInfoType = SQL_MAX_USE
NAME_LEN

getDefaultTransactionIsolation SQLGetInfo fInfoType = SQL_DEFAULT_T
ISOLATION

supportsTransactions SQLGetInfo fInfoType = SQL_TXN_CAPAB
the result must not be

SQL_TC_NONE

supportsTransactionIsolation
Level

SQLGetInfo fInfoType =
SQL_TXN_ISOLATION_

OPTION

supportsDataDefinitionAnd
DataManipulationTransactions

SQLGetInfo fInfoType = SQL_TXN_CAPAB
the result must have the

SQL_TC_ALL bit set

supportsDataManipulation
TransactionsOnly

SQLGetInfo fInfoType = SQL_TXN_CAPAB
the result must have the

SQL_TC_DML bit set

dataDefinitionCauses
Transaction Commit

SQLGetInfo fInfoType = SQL_TXN_CAPAB
the result must have the

SQL_TC_DDL_COMMIT bit s

dataDefinition
IgnoredIn Transactions

SQLGetInfo fInfoType = SQL_TXN_CAPAB
the result must have the

SQL_TC_DDL_IGNORE bit s

getProcedures SQL
Procedures

Returns a list of procedur
names

getProcedureColumns SQLProcedure
Columns

Returns a list of input and ou
parameters used for procedu

getTables SQLTables Returns a list of tables

getSchemas SQLTables Catalog = “”, Schema = “%
Table = “”, TableType = NU

only the TABLE_SCHEM colum
returned

getCatalogs SQLTables Catalog = “%”, Schema =
Table = “”, TableType = NU
only the TABLE_CAT column

returned

getTableTypes SQLTables Catalog = “”, Schema = “”, T
= “”, TableType = “%”

getColumns SQLColumns Returns a list of column nam
in specified tables

getColumnPrivileges SQLColumn
Privileges

Returns a list of columns a
associated privileges for th

specified table

getTablePrivileges
SQLTable
Privileges

Returns a list of tables and
privileges associated with e

table

getBestRowIdentifier SQLSpecial
Columns

fColType = SQL_BEST_ROW

getVersionColumns SQLSpecial
Columns

fColType = SQL_ROWVER

getPrimaryKeys SQLPrimary
Keys

Returns a list of column nam
that comprise the primary k

for a table

getImportedKeys SQLForeign
Keys

PKTableCatalog = NULL,
PKTableSchema = NULL,

PKTableName = NULL

getExportedKeys SQLForeign
Keys

FKTableCatalog = NULL,
FKTableSchema = NULL,

FKTableName = NULL

getCrossReference SQLForeign
Keys

Returns a list of foreign key
the specified table

getTypeInfo
SQLGetType

Info
fSqlType = SQL_ALL_TYPE

Returns a list of statistics about the specified table and the indexes associ
with the table

Table 5.4
Statement ODBC
calls. JDBC
Interface Method
 ODBC Call Comments

close SQLFreeStmt fOption = SQL_CLOSE

getMaxFieldSize SQLGetStmtOption
fOption =

SQL_MAX_LENGTH

setMaxFieldSize SQLSetStmtOption
fOption =

SQL_MAX_LENGTH

getMaxRows SQLGetStmtOption
fOption =

SQL_MAX_ROWS

setMaxRows SQLSetStmtOption
fOption =

SQL_MAX_ROWS

setEscapeProcessing SQLSetStmtOption
fOption =

SQL_NOSCAN

getQueryTimeout SQLGetStmtOption fOption =
SQL_QUERY_TIMEOUT

setQueryTimeout SQLSetStmtOption fOption =
SQL_QUERY_TIMEOUT

cancel SQLCancel Cancels the
processing on a

statement

setCursorName SQLSetCursorName Associates a cursor
name with a
statement

execute SQLExecDirect The Bridge checks for

a SQL statement
containing a ‘FOR
UPDATE’ clause; if
present, the cursor

concurrency level for
the statement is

changed to
SQL_CONCUR_LOCK

getUpdateCount SQLRowCount Returns the number
of rows affected by

an UPDATE, INSERT,
or DELETE statement

Determines whether there are more results available on a
statement and, if so, initializes processing for those results

Table 5.5
PreparedStatement
ODBC calls. JDBC
Interface Method
 ODBC Call Comments

setNull SQLBindParameter fParamType =
SQL_PARAM_INPUT;
fSqlType = sqlType

passed as parameter

setBoolean

setByte

setShort

setInt

setLong

setFloat

setDouble

setNumeric

setString

setBytes

setDate

setTime

setTimestamp SQLBindParameter fParamType =
SQL PARAM INPUT;

fSqlType is derived by
the type of get

method

setAsciiStream

setUnicodeStream

setBinaryStream SQLBindParameter fParamType =
SQL_PARAM_INPUT,

pcbValue =
SQL_DATA_AT_EXEC

May return SQL_NEED_DATA (because of setAsciiStream,
setUnicodeStream, or setBinary Stream); in this case, the
Bridge will call SQLParamData and SQLPutData until no more
data is needed

Table 5.6
CallableStatement
ODBC calls. JDBC
Interface
Method
 ODBC Call Comments

fParamType = SQL_PARAM_OUTPUT; rgbValue is a buffer
that has been allocated in Java; when using the getXXX
methods, this buffer is used to retrieve the data

Table 5.7
ResultSet ODBC
calls. JDBC
Interface
Method
 ODBC Call Comments

next SQLFetch Fetches a row of data
from a ResultSet

close SqlFreeStmt fOption = SQL_CLOSE

getString

getBoolean

getByte

getShort

getInt

getLong

getFloat

getDouble

getNumeric

getBytes

getTime

getTimestamp SQLGetData fCType is derived by
the type of get method

getAsciiStream

getUnicodeStream

getBinaryStream SQLGetData An InputStream object
is created to provide a

wrapper around the
SQLGetData call; data
is read from the data

source as needed

Returns the cursor name associated with the statement

Table 5.4
Statement ODBC
calls. JDBC
Interface Method
 ODBC Call Comments

close SQLFreeStmt fOption = SQL_CLOSE

getMaxFieldSize SQLGetStmtOption
fOption =

SQL_MAX_LENGTH

setMaxFieldSize SQLSetStmtOption
fOption =

SQL_MAX_LENGTH

getMaxRows SQLGetStmtOption
fOption =

SQL_MAX_ROWS

setMaxRows SQLSetStmtOption
fOption =

SQL_MAX_ROWS

setEscapeProcessing SQLSetStmtOption
fOption =

SQL_NOSCAN

getQueryTimeout SQLGetStmtOption fOption =
SQL_QUERY_TIMEOUT

setQueryTimeout SQLSetStmtOption fOption =
SQL_QUERY_TIMEOUT

cancel SQLCancel Cancels the
processing on a

statement

setCursorName SQLSetCursorName Associates a cursor
name with a
statement

execute SQLExecDirect The Bridge checks for
a SQL statement
containing a ‘FOR
UPDATE’ clause; if
present, the cursor

concurrency level for
the statement is

changed to
SQL_CONCUR_LOCK

getUpdateCount SQLRowCount Returns the number
of rows affected by

an UPDATE, INSERT,
or DELETE statement

Determines whether there are more results available on a
statement and, if so, initializes processing for those results

Table 5.5
PreparedStatement
ODBC calls. JDBC
Interface Method
 ODBC Call Comments

setNull SQLBindParameter fParamType =
SQL_PARAM_INPUT;
fSqlType = sqlType

passed as parameter

setBoolean

setByte

setShort

setInt

setLong

setFloat

setDouble

setNumeric

setString

setBytes

setDate

setTime

setTimestamp SQLBindParameter fParamType =
SQL_PARAM_INPUT;

fSqlType is derived by
the type of get

method

setAsciiStream

setUnicodeStream

setBinaryStream SQLBindParameter fParamType =
SQL_PARAM_INPUT,

pcbValue =
SQL_DATA_AT_EXEC

May return SQL_NEED_DATA (because of setAsciiStream,
setUnicodeStream, or setBinary Stream); in this case, the
Bridge will call SQLParamData and SQLPutData until no more
data is needed

Table 5.6
CallableStatement
ODBC calls. JDBC
Interface
Method
 ODBC Call Comments

fParamType = SQL_PARAM_OUTPUT; rgbValue is a buffer
that has been allocated in Java; when using the getXXX
methods, this buffer is used to retrieve the data

Table 5.7
ResultSet ODBC
calls. JDBC
Interface
Method
 ODBC Call Comments

next SQLFetch Fetches a row of data
from a ResultSet

close SqlFreeStmt fOption = SQL_CLOSE

getString

getBoolean

getByte

getShort

getInt

getLong

getFloat

getDouble

getNumeric

getBytes

getTime

getTimestamp SQLGetData fCType is derived by
the type of get method

getAsciiStream

getUnicodeStream

getBinaryStream SQLGetData An InputStream object
is created to provide a

wrapper around the
SQLGetData call; data
is read from the data

source as needed

Returns the cursor name associated with the statement

Chapter 6
SQL Data Types In Java And ORM
Many of the standard SQL-92 data types, such as Date, do not have a native Java
equivalent. To overcome this deficiency, you must map SQL data types into Java. This
process involves using JDBC classes to access SQL data types. In this chapter, we’ll take
a look at the classes in the JDBC that are used to access SQL data types. In addition,
we’ll briefly discuss the Object Relation Model (ORM), an interesting area in database
development that attempts to map relational models into objects.

You need to know how to properly retrieve equivalent Java data types—like int, long,
and String—from their SQL counterparts and store them in your database. This can be
especially important if you are working with numeric data (which requires careful
handling of decimal precision) and SQL timestamps (which have a well-defined format).
The mechanism for handling raw binary data is touched on in this chapter, but it is
covered in more detail in Chapter 8.

Mapping SQL Data To Java

Mapping Java data types into SQL is really quite simple. Table 6.1 shows how Java data
types map into equivalent SQL data types. Note that the types beginning with java.sql.
are not elemental data types, but are classes that have methods for translating the data
into usable formats.

Table 6.1 Java data
type mapping into SQL
data types. Java Type

SQL Type

string VARCHAR or LONGVARCHAR

java.sql.Numeric NUMERIC

boolean BIT

byte TINYINT

short SMALLINT

int INTEGER

long BIGINT

float REAL

double DOUBLE

byte[] VARBINARY or LONGVARBINARY

java.sql.Date DATE

java.sql.Time TIME

TIMESTAMP

The byte[] data type is a byte array of variable size. This data structure is used to store
binary data; binary data is manifest in SQL as VARBINARY and LONGVARBINARY.
These types are used to store images, raw document files, and so on. To store or retrieve
this data from the database, you would use the stream methods available in the JDBC:
setBinaryStream and getBinaryStream. In Chapter 8, we’ll use these methods to build
a multimedia Java/JDBC application.

Table 6.2 shows the mapping of SQL data types into Java. You will find that both tables
will come in handy when you’re attempting to decide which types need special treatment.

You can also use the tables as a quick reference to make sure that you’re properly casting
data that you want to store or retrieve.

Table 6.2 SQL data
type mapping into Java
and JDBC. Java Type

SQL Type

CHAR String

VARCHAR String

LONGVARCHAR String

NUMERIC java.sql.Nueric

DECIMAL java.sql.Numeric

BIT boolean

TINYINT byte

SMALLINT short

INTEGER int

BIGINT long

REAL float

FLOAT double

DOUBLE souble

BINARY byte[]

VARBINARY byte[]

LONGBINARY byte[]

DATE java.sql.Date

TIME java.sql.Time

java.sql.Timestamp

Now that you’ve seen how these data types translate from Java to SQL and vice versa,
let’s look at some of the methods that you’ll use to retrieve data from a database. These
methods, shown in Table 6.3, are contained in the ResultSet class, which is the class that
is passed back when you invoke a Statement.executeQuery function. You’ll find a
complete reference of the ResultSet class methods in Chapter 12.

The parameters int and String allow you to specify the column you want by column
number or column name.

Table 6.3 A few ResultSet
methods for getting data.
Method

Description

getAsciiStream(String),
getAsciiStream(int)

Retrieves a column value as a
stream of ASCII characters
and then reads in chunks

from the stream

getBinaryStream(int),
getBinaryStream(String)

Retrieves a column value as a
stream of uninterpreted bytes

and then reads in chunks
from the stream

getBoolean(int),
getBoolean(String)

Returns the value of a column
in the current row as a Java

boolean

getDate(int), getDate(String) Returns the value of a column
in the current row as a

java.sql.Date object

Returns the value of a column as a Java object

ResultSetMetaData

One of the most useful classes you can use to retrieve data from a ResultSet is the
ResultSetMetaData class. This class contains methods that allow you to obtain vital
information about the query’s result. After a query has been executed, you can call the
ResultSet.getMetaData method to fetch a ResultSetMetaData object for the resulting
data. Table 6.4 shows some of the methods that you will most likely use. Again, more
ResultSetMetaData methods are listed in Chapter 12.

Table 6.4 Handy
methods in the
ResultSetMetaData
class. Method

Description

getColumnCount()
Indicates the number of columns in

the ResultSet

getColumnLabel(int) Returns the database-assigned
Label for the column at position int

in the ResultSet

getColumnName(int)
Returns the column’s name (for

query reference)

getColumnType(int)
Returns the specified column’s SQL

type

isNullable(int)
Tells you if the specified column can

contain NULLs

Indicates whether the specified column is searchable via a
WHERE clause

Understanding The Object Relation Model

The Object Relation Model (ORM) attempts to fuse object-orientation with the relational
database model. Because many of today’s programming languages, such as Java, are
object-oriented, a tighter integration between the two would provide easier abstraction for
developers who program in object-oriented languages and also are required to “program”
in SQL. Such an integration would also relieve the necessity of constant translation
between database tables and object-oriented data structures, which can be an arduous
task.

Mapping A Table Into A Java Object

Let’s look at a simple example to demonstrate the basics of ORM. Suppose we create the
following table in a database:

First_Name Last_Name Phone_Number Employee_Number

Pratik Patel 800-555-1212 30122

Karl Moss 800-555-1213 30124

Keith Weiskamp 800-555-1214 09249

Ron Pronk 800-555-1215 10464

You can easily map this table into a Java object. Here’s the Java code you would write to
encapsulate the data contained in the table:
class Employee {
int Key;
String First_Name;
String Last_Name;
String Phone_Number;
int Employee_Number;
Key=Employee_Number;
}

To retrieve this table from the database into Java, we simply assign the respective
columns to the Employee object we created previously for each row we retrieve, as
shown here:
Employee emp_object = new Employee();
emp_object.First_Name= resultset.getString("First_Name");
emp_object.Last_Name= resultset.getString("Last_Name");
emp_object.Phone_Number=resultset.getString("Phone_Number");
emp_object.Employee_Number=resultset.getInt("Employee_Number");

With a larger database model (with links between tables), a number of problems can
arise, including scalability due to multiple JOINs in the data model and cross-linking of
table keys. Fortunately, a number of products are already available that allow you to
create these kinds of object-oriented/relational bridges. Moreover, there are several
solutions being developed to work specifically with Java.

I’ve given you an idea of what ORM is all about. If you would like to investigate this
topic further, check out The Coriolis Group Web site (http://www.coriolis.com/jdbc-
book) for links to ORM vendors and some really informative ORM documents. The
ODMG (Object Database Management Group) is a consortium that is working on a
revised standard for object database technology and the incorporation of this concept into
programming languages such as Java. A link to the consortium’s Web site can be found
on The Coriolis Group Web site as well.

Summary

As you can see from this brief chapter, mapping SQL data types to Java is truly a snap.
We covered a few of the more important methods you will use to retrieve data from a
database. For a complete reference, see Chapter 12 and have a look at the Date, Time,
TimeStamp, Types, and Numeric classes.

The next chapter steps back from the JDBC to look at ways of presenting your data in
Java. Using Java packages available on the Net, we’ll cover graphs, tables, and more.
We’ll also discuss some nifty methods in the JDBC that will help streamline your code
for retrieving data from your database.

Chapter 7
Working With Query Results
So far, we’ve been concentrating on how to use the classes in the JDBC to perform SQL
queries. That’s great, but now we have to do something with the data we’ve retrieved.
The end user of your JDBC applets or applications will want to see more than just rows
and rows of data. In this chapter, we’ll learn how to package the raw table data that is
returned after a successful SQL query into a Java object, and then how to use this
packaged data to produce easy-to-read graphs.

The first issue we’ll look at is creating a Java object to store the results of a query. This
object will provide a usable interface to the actual query results so they can be plugged
into a Java graphics library. We’ll create a simple data structure to hold the column
results in a formatted way so that we can easily parse them and prepare them for display.
Second, we’ll look at taking these results in the Java object and setting up the necessary
code to plug the data into a pie chart and bar graph Java package.

In the next chapter, we’ll go one step further and work with BLOB data types (like
images). Between these chapters, I will be providing plenty of examples, complete with
code, to help you work up your own JDBC programs. At the very least, these chapters

http://www.coriolis.com/jdbc-book
http://www.coriolis.com/jdbc-book

will give you some ideas for dealing with raw table data and displaying it in an effective
manner.

A Basic Java Object For Storing Results

Although the JDBC provides you with the ResultSet class to get the data from an SQL
query, you will still need to store and format within your program the results for display.
The smart way to do this is in a re-usable fashion (by implementing a generic object or
class) which allows you to re-use the same class you develop to retrieve data from a
query in any of your JDBC programs. The code snippet in Listing 7.1 is a method that
will keep your results in a Java object until you are ready to parse and display it.

Let’s begin by defining the data we will be getting from the source, and determining how
we want to structure it within our Java applet. Remember that the ResultSet allows us to
retrieve data in a row-by-row, column-by-column fashion; it simply gives us sequential
access to the resulting table data. Table 7.1 shows the example table we will be using in
this chapter.

Table 7.1
Example table.
emp_no

first_name last_name salary

01234 Pratik Patel 8000

1235 Karl Moss 23000

0002 Keith Weiskamp 90000

0045 Ron Pronk 59999

53000

The optimal way to store this data in our Java program is to put each column’s data in its
own structure and then link the different columns by using an index; this will allow us to
keep the columnar relationship of the table intact. We will put each column’s data in an
array. To simplify matters, we’ll use the getString method, which translates the different
data types returned by a query into a String type. Then, we’ll take the data in a column
and delimit the instances with commas. We’ll use an array of String to do this; each place
in the array will represent a different column. The data object we will create is shown
here:
table_data[0] => 01234,1235,0002,0045,0067
table_data[1] => Pratik,Karl,Keith,Ron,David
table_data[2] => Patel,Moss,Weiskamp,Pronk,Friedel
table_data[3] => 8000,23000,90000,59999,53000

Listing 7.1 shows the method we’ll use to query the database and return a String array
that contains the resulting table data.

Listing 7.1 The getData method.

public String[] getData(String QueryLine) {
// Run the QueryLine SQL query, and return the resulting columns in an
// array of String. The first column is at index [0], the second at [1],
// etc.

 int columns, pos;
 String column[]=new String[4];
// We have to initialize the column String variable even though we re-
// declare it below. The reason is because the declaration below is in a
// try{} statement, and the compiler will complain that the variable may
// not be initialized.

 boolean more;

 try {

 Statement stmt = con.createStatement();
 // Create a Statement object from the
 // Connection.createStatement method.

 ResultSet rs = stmt.executeQuery(QueryLine);
 // Execute the passed in query, and get
 // the ResultSet for the query.

 columns=(rs.getMetaData()).getColumnCount();
 // Get the number of columns in the resulting table so we can
 // declare the column String array, and so we can loop
 // through the results and retrieve them.

 column = new String[columns];
 // Create the column variable to be the exact number of
 // columns that are in the result table.
 // Initialize the column array to be blank since we'll be adding
 // directly to them later.

for(pos=1; pos<=columns; pos++) {
 column[pos-1]="";
 }

 more=rs.next();
 // Get the first row of the ResultSet. Loop through the
ResultSet
 // and get the data, row-by-row, column-by-column.
 while(more) {

 for (pos=1; pos<=columns; pos++) {
 column[pos-1]+=(rs.getString(pos));
 // Add each column to the respective column[] String array.
 }

 more=rs.next();
 // Get the next row of the result if it exists.

 // Now add a comma to each array element to delimit this row
is
 // done.
 for (pos=1; pos<=columns; pos++) {

 if(more) {
 // We only want to do this if this isn't the last row of the
 // table!
 column[pos-1]+=(",");
 }
 }
 }
 stmt.close();
 // All done. Close the statement object.
 }
 catch(Exception e) {
 e.printStackTrace();
 System.out.println(e.getMessage());
 }
return column;
// Finally, return the entire column[] array.
}

Showing The Results

Now that we have the data nicely packaged into our Java object, how do we show it? The
code in Listing 7.2 dumps the data in the object to the screen. We simply loop through
the array and print the data.

Listing 7.2 Code to print retrieved data to the console.
public void ShowFormattedData(String[] columnD) {

int i;

for (i=0; i< columnD.length; i++) {
 System.out.println(columnD[i]+"\n");
 }
}

Charting Your Data

Now that we’ve covered the preliminaries, we are ready to get to the fun stuff! Instead of
creating a package that has graphics utilities, we’re going to use the NetCharts library,
which is stored on the accompanying CD-ROM. The package on the CD is only an
evaluation copy. Stop by http://www.netcharts.com to pick up the latest version (and
some helpful documentation). We’ll use the table in Table 7.1 and a bar chart to display
the salary information for our fictional company. Figure 7.1 shows the applet that is
generated from the code in Listing 7.3. Remember, the code for this example can be
found on the accompanying CD-ROM, or at The Coriolis Group Web site at
http://www.coriolis.com/jdbc-book.

Figure 7.1 The bar chart applet.

http://www.netcharts.com/
http://www.coriolis.com/jdbc-book

Listing 7.3 Dynamically generating a bar chart from a database query—Part I.
/*
Example 7-1
*/
import java.awt.*;
import java.applet.Applet;
import java.sql.*;

public class example71 extends java.applet.Applet {
 String url;
 String Name;
 Connection con;
 TextArea OutputField = new TextArea(10,35);
 NFBarchartApp bar;
 // This is the bar chart class from the NetCharts package

public void init() {
 setLayout(new BorderLayout());
 url="jdbc:msql://elanor/jdbctest";
 // The URL for the database we wish to connect to

 ConnectToDB();
 // Connect to the database.

 add("North", OutputField);
 // Add the TextArea for showing the data to the user
 String columnData[] = getData("select * from Employee");
 // Run a query that goes and gets the complete table listing; we can
put
 // any query here and would optimally want to get only the columns we
 // need.

 ShowFormattedData(columnData);
 // Show the data in the TextArea
 ShowChartData(columnData[3],columnData[2]);

// Now, pass the two data sets and create a bar chart
 add("Center", bar);
// And add the bar chart to the applet's panel
}

public void ShowFormattedData(String[] columnD) {

int i;

for (i=0; i< columnD.length; i++) {
 OutputField.appendText(columnD[i]+"\n");
}

}

public void ConnectToDB() {

 try {
 new imaginary.sql.iMsqlDriver();

 con = DriverManager.getConnection(url, "prpatel", "");
 }
 catch(Exception e) {
 e.printStackTrace();
 System.out.println(e.getMessage());
 }

}

public void ShowChartData(String Data1, String Data2) {
try {
 bar = new NFBarchartApp(this);
 // Instantiate the bar chart class

 bar.init();
 bar.start();
 // Initialize it, and start it running.

 // Below is where we load the parameters for the
chart.
 // See the documentation at the NetCharts Web site, or
 // the CD-ROM for details.

 bar.loadParams(
 "Header = ('Salary Information');"+
 "DataSets = ('Salary', red);"+
 "DataSet1 = "+ Data1 + ";"+
 "BarLabels = "+ Data2 + ";"+
 "GraphLayout= HORIZONTAL;"+
 "BottomAxis = (black, 'TimesRoman', 14, 0,
 0,100000)"
);

 bar.loadParams ("Update");
 // Tell the bar chart class we've put
 // some new parameters in.

 } catch (Exception e) {
 System.out.println (e.getMessage());
 }

} // More to come following some comments…

The bar chart class from the NetCharts package uses a method to load the values for the
chart. We have to define the labels and corresponding values, but this is generally
straightforward. Because our data is formatted in a comma-delimited fashion, we don’t
have to parse the data again to prepare it for use. In the next example (the pie chart
example), we do have to parse it to put it in the proper format for the charting class to
recognize it. Listing 7.4 picks up the code where we left off in Listing 7.3.

Listing 7.4 Dynamically generating a bar chart from a database query—Part II.
public String[] getData(String QueryLine) {

 int columns, pos;
 String column[]=new String[4];

 boolean more;

 try {

 Statement stmt = con.createStatement();
 ResultSet rs = stmt.executeQuery(QueryLine);
 columns=(rs.getMetaData()).getColumnCount();
 column = new String[columns];

 // Initialize the columns to be blank
 for(pos=1; pos<=columns; pos++) {
 column[pos-1]="";
 }

 more=rs.next();

 while(more) {

 for (pos=1; pos<=columns; pos++) {
 column[pos-1]+=(rs.getString(pos));
 }

 more=rs.next();
 for (pos=1; pos<=columns; pos++) {
 if(more) {
 column[pos-1]+=(",");
 }
 }
 }
 stmt.close();

 }
 catch(Exception e) {
 e.printStackTrace();
 System.out.println(e.getMessage());
 }

return column;
}

That’s it! We’ve successfully queried a database, formatted the resulting data, and created
a bar chart to present a visual representation of the results. Listing 7.5 shows the
generation of a pie chart, and Figure 7.2 shows the pie chart applet.

Figure 7.2 The pie chart applet.

Listing 7.5 Dynamically generating a pie chart from a database query.
/*
Example 7-2: Pie chart
*/
import java.awt.*;
import java.applet.Applet;
import java.sql.*;
import java.util.StringTokenizer;

public class example72 extends java.applet.Applet {
 String url;
 String Name;
 Connection con;
 TextArea OutputField = new TextArea(10,35);
 NFPiechartApp pie;

public void init() {
 setLayout(new BorderLayout());
 url="jdbc:msql://elanor/jdbctest";
 pie = new NFPiechartApp(this);

 ConnectToDB();

 add("North", OutputField);
 String columnData[] = getData("select * from Cost");

 ShowFormattedData(columnData);
 ShowChartData(columnData[1],columnData[0]);
 add("Center", pie);

}

public void ConnectToDB() {

 try {
 new imaginary.sql.iMsqlDriver();
 con = DriverManager.getConnection(url, "prpatel", "");
 }
 catch(Exception e) {
 e.printStackTrace();
 System.out.println(e.getMessage());
 }

}

public void ShowFormattedData(String[] columnD) {

int i;

for (i=0; i< columnD.length; i++) {
 OutputField.appendText(columnD[i]+"\n");
 }

}

public void ShowChartData(String dataNumber, String dataLabel) {

StringTokenizer nData, lData;
String SliceData = "";
ColorGenerator colorGen = new ColorGenerator();

// We need to assign colors to the pie slices automatically, so we use a
// class that cycles through colors. See this class defined below.

nData = new StringTokenizer(dataNumber, ",");
lData = new StringTokenizer(dataLabel, ",");
// We used our preformatted column data, and need to break it down to
the
// elements. We use the StringTokenizer to break the column string data
// individual down by commas we inserted when we created the data.

// We assume that dataNumber and dataLabel have the same number of
// elements since we just generated them from the getData method.

while(nData.hasMoreTokens()) {
// Loop through the dataNumber and dataLabel and build the slice data:
// (1234, darkBlue, "Label"). This is what the pie chart class
expects,
// so we must parse our data and put it in this format.

SliceData += "("+nData.nextToken() + ", "
 + colorGen.next() + ", '"
 + lData.nextToken() + "', green)";

System.out.println(SliceData);
if (nData.hasMoreTokens()) {SliceData += ", ";}
}

try {
 // We already instantiated the pie chart
 // class(NFPieChartAPP) at the top of the applet.
 pie.init();
 pie.start();
 // Initialize and start the pie chart class.

 pie.loadParams(
 "Background=(black, RAISED, 4);"+
 "Header=('Cost Information (millions)');"+
 "LabelPos=0.7;"+
 "DwellLabel = ('', black, 'TimesRoman', 16);"+
 "Legend = ('Legend', black);"+
 "LegendBox = (white, RAISED, 4);"+
 "Slices=(12.3, blue, 'Marketing', cyan), (4.6,
 antiquewhite, 'Sales'), (40.1, aqua, 'Production'),
 (18.4, aquamarine, 'Support');");

 // Above, we set the parameters for the pie chart,
 // including the data and labels which we generated
 // in the loop above (SliceData), and the Legend,
 // label position, header, and other properties.
 // Again, have a look at the NetCharts documentation
 // for all of the possible parameters.

 pie.loadParams ("Update");
 // Tell the pie chart class we've sent it new
 // parameters to display.
 } catch (Exception e) {
 System.out.println (e.getMessage());
 }
}

// Below is the same as before except for the new ColorGenerator class
// that we needed to produce distinct colors.

public String[] getData(String QueryLine) {

 int columns, pos;
 String column[]=new String[4];
 boolean more;

 try {

 Statement stmt = con.createStatement();
 ResultSet rs = stmt.executeQuery(QueryLine);
 columns=(rs.getMetaData()).getColumnCount();

 column = new String[columns];

 // Initialize the columns to be blank
 for(pos=1; pos<=columns; pos++) {
 column[pos-1]="";
 }

 more=rs.next();

 while(more) {for (pos=1; pos<=columns; pos++) {
 column[pos-1]+=(rs.getString(pos));
 }

 more=rs.next();
 for (pos=1; pos<=columns; pos++) {
 if(more) {
 column[pos-1]+=(",");
 }
 }
 }
 stmt.close();
 // con.close();
 }
 catch(Exception e) {
 e.printStackTrace();
 System.out.println(e.getMessage());
 }

return column;
}
public void destroy() {

 try {con.close();}

 catch(Exception e) {
 e.printStackTrace();
 System.out.println(e.getMessage());
 }
}
}

class ColorGenerator {
// This class is needed to produce colors that the pie chart can use to
// color the slices properly. They are taken from the NetCharts color
// class, NFColor.
public ColorGenerator() {

}

int color_count = -1;
// Keep a running count of the colors we have used. We'll simply index
// the colors in a String array, and call up the incremented counter to
// get a new color. If you need more colors than are added below, you
can
// add more by pulling them from the NFColor class found in the
NetCharts
// package on the CD-ROM or Web site.

String colors[] =
{"aliceblue","antiquewhite","aqua","aquamarine","azure","beige",
"bisque","black","blanchedalmond","blue","blueviolet","brown","chocolate
",
"cadetblue","chartreuse","cornsilk","crimson","cyan"};

public String next() {

// Increment the color counter, and return a String which contains the
// color at this index.
 color_count += 1;
 return colors[color_count];

}

} // end example72.java

Summary

This chapter has shown you how to generate meaningful charts to represent data obtained
from a query. We’ve seen how to create both bar and pie charts. You can use the
properties of the NetCharts package to customize your charts as you wish, and there are
many more options in the package that haven’t been shown in the examples here.

In the next chapter, we will continue to discuss working with database query results, and
we will provide a complete code example for showing SQL BLOB data types. It shows
you how to get an image from the ResultSet, as well as how to add images or binary data
to a table in a database.

Chapter 8
The IconStore Multimedia JDBC Application
In the previous chapter, we learned how to process query results with JDBC. In this
chapter, we’ll take these query results and put them to use in a multimedia application.
The application we’ll be developing, IconStore, will connect to a database, query for
image data stored in database tables, and display the images on a canvas. It’s all very
simple, and it puts the JDBC to good use by building a dynamic application totally driven
by data stored in tables.

IconStore Requirements

The IconStore application will utilize two database tables: ICONCATEGORY and
ICONSTORE. The ICONCATEGORY table contains information about image
categories, which can be items like printers, sports, and tools. The ICONSTORE table
contains information about each image. Tables 8.1 and 8.2 show the database tables’
underlying data structures.

Note that the CATEGORY column in the ICONSTORE is a foreign key into the
ICONCATEGORY table. If the category ID for sports is “1”, you can obtain a result set
containing all of the sports images by using this statement:
SELECT ID, DESCRIPTION, ICON FROM ICONSTORE WHERE CATEGORY = 1

Table 8.1 The
ICONCATEGORY
table. Column
Name

SQL Type Description

CATEGORY INTEGER Category ID

Description of the image category

Table 8.2 The
ICONSTORE table.
Column Name

SQL Type Description

ID INTEGER Image ID

DESCRIPTION VARCHAR
Description of the

image

CATEGORY INTEGER Category ID

Binary image

Now, let’s take a look at what’s going on in the application:

• An Icons menu, which is dynamically created by the
ICONCATEGORY table, contains each of the image
categories as an option. The user can select an image
category from this menu to display the proper list of
image descriptions in a list box. The ICONSTORE table
is used to dynamically build the list.
• The user can select an image description from the
list box to display the corresponding image.
• Once an image has been displayed, the user can
select the Save As menu option to save the image to
disk.

As you can see, IconStore will not be too complicated, but it will serve as a very good
foundation for developing database-driven applications.

Building The Database

Now that we’ve established the application’s requirements, we need to build the
underlying database. We’ll look at a simple JDBC application to accomplish this,
although it may be created by any number of methods. Listing 8.1 shows the
BuildDB.java source code. This application uses the SimpleText JDBC driver (covered in
great detail in Chapter 10) to create the ICONCATEGORY and ICONSTORE tables, but
any JDBC driver can be used in its place.

Listing 8.1 Building the IconStore database.
import java.sql.*;
import java.io.*;

class BuildDB {
//————————————————————————————————————
// main
//————————————————————————————————————
public static void main(String args[]) {
 try {
 // Create an instance of the driver
 java.sql.Driver d = (java.sql.Driver) Class.forName (
 "jdbc.SimpleText.SimpleTextDriver").newInstance();

 // Properties for the driver
 java.util.Properties prop = new java.util.Properties();

 // URL to use to connect
 String url = "jdbc:SimpleText";

 // The only property supported by the SimpleText driver
 // is "Directory."
 prop.put("Directory", "/java/IconStore");

 // Connect to the SimpleText driver
 Connection con = DriverManager.getConnection(url, prop);

 // Create the category table

 buildCategory(con, "IconCategory");

 // Create the IconStore table
 buildIconStore(con, "IconStore");

 // Close the connection
 con.close();
 }
 catch (SQLException ex) {
 System.out.println("\n*** SQLException caught ***\n");
 while (ex != null) {
 System.out.println("SQLState: " + ex.getSQLState());
 System.out.println("Message: " + ex.getMessage());
 System.out.println("Vendor: " + ex.getErrorCode());
 ex = ex.getNextException ();
 }
 System.out.println("");
 }
 catch (java.lang.Exception ex) {
 ex.printStackTrace ();
 }
}
//————————————————————————————————————
// BuildCategory
// Given a connection object and a table name, create the IconStore
// category database table.
//————————————————————————————————————
protected static void buildCategory(
 Connection con,
 String table)
 throws SQLException
{
 System.out.println("Creating " + table);
 Statement stmt = con.createStatement();
 // Create the SQL statement
 String sql = "create table " + table +
 " (CATEGORY NUMBER, DESCRIPTION VARCHAR)";

 // Create the table
 stmt.executeUpdate(sql);

 // Create some data using the statement
 stmt.executeUpdate("INSERT INTO " + table + " VALUES (1,
 'Printers')");
 stmt.executeUpdate("INSERT INTO " + table + " VALUES (2,
'Sports')");
 stmt.executeUpdate("INSERT INTO " + table + " VALUES (3, 'Tools')");
}
//————————————————————————————————————
// BuildIconStore
// Given a connection object and a table name, create the IconStore
// icon database table.
//————————————————————————————————————
protected static void buildIconStore(
 Connection con,
 String table)
 throws SQLException

{

 System.out.println("Creating " + table);

 Statement stmt = con.createStatement();

 // Create the SQL statement
 String sql = "create table " + table +
 " (ID NUMBER, DESCRIPTION VARCHAR, CATEGORY NUMBER, ICON
 BINARY)";

 // Create the table
 stmt.executeUpdate(sql);
 stmt.close();

 // Create some data using a prepared statement
 sql = "insert into " + table + " values(?,?,?,?)";
 FileInputStream file;
 PreparedStatement ps = con.prepareStatement(sql);

 int category;
 int id = 1;

 // Add the printer icons
 category = 1;

 addIconRecord(ps, id++, "Printer 1", category,
"printers/print.gif");
 addIconRecord(ps, id++, "Printer 2", category,
"printers/print0.gif");

 // Add the sports icons
 category = 2;

 addIconRecord(ps, id++, "Archery", category, "sports/
 sport_archery.gif");
 addIconRecord(ps, id++, "Baseball", category, "sports/
 sport_baseball.gif");

 // Add the tools
 category = 3;

 addIconRecord(ps, id++, "Toolbox 1", category, "tools/toolbox.gif");
 addIconRecord(ps, id++, "Toolbox 2", category,
"tools/toolbox1.gif");
 ps.close();
}

//——————————————————————————————————
// AddIconRecord
// Helper method to add an IconStore record. A PreparedStatement is
// provided to which this method binds input parameters. Returns
// true if the record was added.
//——————————————————————————————————
protected static boolean addIconRecord(
 PreparedStatement ps,
 int id,

 String desc,
 int category,
 String filename)
 throws SQLException
{
 // Create a file object for the icon
 File file = new File(filename);
 if (!file.exists()) {
 return false;
 }

 // Get the length of the file. This will be used when binding
 // the InputStream to the PreparedStatement.
 int len = (int) file.length();

 FileInputStream inputStream;

 try {

 // Attempt to create an InputStream from the File object
 inputStream = new FileInputStream (filename);
 }
 catch (Exception ex) {

 // Some type of failure. Convert it into a SQLException.
 throw new SQLException (ex.getMessage ());
 }

 // Set the parameters
 ps.setInt(1, id);
 ps.setString(2, desc);
 ps.setInt(3,category);
 ps.setBinaryStream(4, inputStream, len);

 // Now execute
 int rows = ps.executeUpdate();
 return (rows == 0) ? false : true;
 }
}

The BuildDB application connects to the SimpleText JDBC driver, creates the
ICONCATEGORY table, adds some image category records, creates the ICONSTORE
table, and adds some image records. Note that when the image records are added to the
ICONSTORE table, a PreparedStatement object is used. We’ll take a closer look at
PreparedStatements in Chapter 11; for now, just realize that this is an efficient way to
execute the same SQL statement multiple times with different parameters values. Also
note that the image data is coming out of GIF files stored on disk. An InputStream is
created using these files, which is then passed to the JDBC driver for input. The JDBC
driver reads the InputStream and stores the binary data in the database table. Simple,
isn’t it? Now that we’ve created the database, we can start writing our IconStore
application.

Application Essentials

The source code for the IconStore application is shown throughout the rest of this
chapter, broken across the various sections. As always, you can pick up a complete copy
of the source code on the CD-ROM. Remember, you need to have the SimpleText JDBC
driver installed before using the IconStore application. See Chapter 3, if you have trouble
getting the application to run.

Writing The main Method

Every JDBC application must have an entry point, or a place at which to start execution.
This entry point is the main method, which is shown in Listing 8.2. For the IconStore
application, main simply processes any command line arguments, creates a new instance
of the IconStore class (which extends Frame, a top-level window class), and sets up the
window attributes. The IconStore application accepts one command line argument: the
location of the IconStore database. The default location is /IconStore.

Listing 8.2 IconStore main method.
import java.awt.*;
import java.io.*;
import java.util.*;
import java.sql.*;

public class IconStore
 extends Frame
{
 IconCanvas imageCanvas;
 List iconList;
 Panel iconListPanel;
 MenuBar menuBar;
 Menu fileMenu;
 Menu sectionMenu;
 List lists[];

 static String myHome = "/IconStore";
 Connection connection;
 Hashtable categories;
 Hashtable iconDesc[];
 String currentList;
 String currentFile = null;
 FileDialog fileDialog;
 //————————————————————————————————————
 // main
 //————————————————————————————————————
 public static void main (String[] args) {

 // If an argument was given, assume it is the location of the
 // database.
 if (args.length > 0) {
 myHome = args[0].trim();

 // If there is a trailing separator, remove it
 if (myHome.endsWith("/") ||
 myHome.endsWith("\\")) {
 myHome = myHome.substring(0, myHome.length() - 1);
 }

 }

 // Create our IconStore object
 IconStore frame = new IconStore();

 // Setup and display
 frame.setTitle("The IconStore");
 frame.init();

 frame.pack();
 frame.resize(300, 400);
 frame.show();
 }

A lot of work is being performed in IconStore.init, such as establishing the database
connection, reading the icon categories, creating the menus, and reading the icon
descriptions. We’ll take a look at each of these in greater detail in the following sections.

Establishing The Database Connection

Listing 8.3 shows the code used by the IconStore application to connect to the
SimpleText JDBC driver.

Listing 8.3 Establishing the database connection.
public Connection establishConnection()
 {

 Connection con = null;
 try {
 // Create an instance of the driver
 java.sql.Driver d = (java.sql.Driver) Class.forName (

"jdbc.SimpleText.SimpleTextDriver").newInstance();

 // Properties for the driver
 java.util.Properties prop = new java.util.Properties();

 // URL to use to connect
 String url = "jdbc:SimpleText";

 // Set the location of the database tables
 prop.put("Directory", myHome);

 // Connect to the SimpleText driver
 con = DriverManager.getConnection(url, prop);
 }
 catch (SQLException ex) {

 // An SQLException was generated. Dump the exception
 // contents. Note that there may be multiple SQLExceptions
 // chainedtogether.

 System.out.println("\n*** SQLException caught ***\n");
 while (ex != null) {
 System.out.println("SQLState: " + ex.getSQLState());
 System.out.println("Message: " + ex.getMessage());

 System.out.println("Vendor: " + ex.getErrorCode());
 ex = ex.getNextException();
 }
 System.exit(1);
 }
 catch (java.lang.Exception ex) {
 ex.printStackTrace();
 System.exit(1);
 }
 return con;
}

Note that we need to set a property for the SimpleText driver to specify the location of
the database tables. In reality, the SimpleText driver stores each database table as a file,
and the Directory property specifies the directory in which these files are kept. As I
mentioned in the previous section, the default location is /IconStore (the IconStore
directory of your current drive), but this can be overridden to be any location.

If successful, a JDBC Connection object is returned to the caller. If there is any reason a
database connection cannot be established, the pertinent information will be displayed
and the application will be terminated.

Creating The Menu

One of the requirements for the IconStore application is the ability to dynamically build
the Icons menu. To do this, we’ll need to query the ICONCATEGORY table and build
the menu from the results. First, we need to read the database table and store the query
results, as shown in Listing 8.4.

Listing 8.4 Reading the ICONCATEGORY table.
//————————————————————————————————————
// getCategories
// Read the IconStore CATEGORY table and create a Hashtable containing
// a list of all the categories. The key is the category description and
// the data value is the category ID.
//————————————————————————————————————
public Hashtable getCategories(
 Connection con)
{
 Hashtable table = new Hashtable();

 try {
 // Create a Statement object
 Statement stmt = con.createStatement();

 // Execute the query and process the results
 ResultSet rs = stmt.executeQuery(
 "SELECT DESCRIPTION,CATEGORY FROM ICONCATEGORY");

 // Loop while more rows exist
 while (rs.next()) {
 // Put the description and id in the Hashtable

 table.put(rs.getString(1), rs.getString(2));
 }
 // Close the statement
 stmt.close();
 }
 catch (SQLException ex) {

 // An SQLException was generated. Dump the exception contents.
 // Note that there may be multiple SQLExceptions chained
 // together.

 System.out.println("\n*** SQLException caught ***\n");
 while (ex != null) {
 System.out.println("SQLState: " + ex.getSQLState());
 System.out.println("Message: " + ex.getMessage());
 System.out.println("Vendor: " + ex.getErrorCode());
 ex = ex.getNextException();
 }
 System.exit(1);
 }

 return table;
}

The flow of this routine is very basic, and we’ll be using it throughout our IconStore
application. First, we create a Statement object; then, we submit an SQL statement to
query the database; next, we process each of the resulting rows; and finally, we close the
Statement. Note that a Hashtable object containing a list of all the categories is
returned; the category description is the key and the category ID is the element. In this
way, we can easily cross-reference a category description to an ID. We’ll see why this is
necessary a bit later.

Now that all of the category information has been loaded, we can create our menu.
Listing 8.5 shows how this is done.

Listing 8.5 Creating the Icons menu.
// Get a Hashtable containing an entry for each icon category.
// The key is the description and the data value is the
// category number.

categories = getCategories(connection);

// File menu
fileMenu = new Menu("File");
fileMenu.add(new MenuItem("Save As"));
fileMenu.add(new MenuItem("Exit"));
menuBar.add(fileMenu);

// Icons menu
sectionMenu = new Menu("Icons");

Enumeration e = categories.keys();
 int listNo = 0;
 String desc;

// Loop while there are more keys (category descriptions)
while (e.hasMoreElements()) {
 desc = (String) e.nextElement();

 // Add the description to the Icons menu
 sectionMenu.add(new MenuItem(desc));
}

// Add the Icons menu to the menu bar
menuBar.add(sectionMenu);

// Set the menu bar
setMenuBar(menuBar);

Notice that the Hashtable containing a list of the image categories is used to create our
menu. The only way to examine the contents of a Hashtable without knowing each of the
keys is to create an Enumeration object, which can be used to get the next key value of
the Hashtable. Figure 8.1 shows our database-driven menu.

Figure 8.1 The IconStore menu.

Creating The Lists

Next on our agenda: creating the list boxes containing the image descriptions. We’ll
create a list for each category, so when the user selects a category from the Icons menu,
only a list of the images for the selected category will be shown. We’ll use a
CardLayout to do this, which is a nifty way to set up any number of lists and switch
between them effortlessly. For each of the categories that we read from the
ICONCATEGORY table, we also read each of the image descriptions for that category
from the ICONSTORE table and store those descriptions in a Hashtable for use later. At
the same time, we add each description to a list for the category. Listing 8.6 shows the
code used to read the ICONSTORE table.

Listing 8.6 Reading the ICONSTORE table.
//————————————————————————————————————
// getIconDesc
// Read the IconStore ICONSTORE table and create a Hashtable
// a list of all the icons for the given category. The key is the
// icon containing description and the data value is the icon ID. The
// description is also added to the List object given.
//————————————————————————————————————
public Hashtable getIconDesc(
 Connection con,

 String category,
 List list)
{
 Hashtable table = new Hashtable();
 String desc;

 try {
 // Create a Statement object
 Statement stmt = con.createStatement();

 // Execute the query and process the results
 ResultSet rs = stmt.executeQuery(
 "SELECT DESCRIPTION,ID FROM ICONSTORE WHERE CATEGORY="
+

 category);

 // Loop while more rows exist
 while (rs.next()) {
 desc = rs.getString(1);

 // Put the description and ID in the Hashtable
 table.put(desc, rs.getString(2));

 // Put the description in the list
 list.addItem(desc);

 }
 // Close the statement
 stmt.close();

}
catch (SQLException ex) {

 // An SQLException was generated. Dump the exception contents.
 // Note that there may be multiple SQLExceptions chained
 // together.
 System.out.println("\n*** SQLException caught ***\n");
 while (ex != null) {
 System.out.println("SQLState: " + ex.getSQLState());
 System.out.println("Message: " + ex.getMessage());
 System.out.println("Vendor: " + ex.getErrorCode());
 ex = ex.getNextException();
 }
 System.exit(1);
 }

 return table;
}

The process we used here is the same as we have seen before—creating a Statement,
executing a query, processing the results, and closing the Statement. Listing 8.7 shows
the entire code for the IconStore.init method. In addition to building the menu, we also
build the CardLayout. It is important to note that the IconStore application is totally
database-driven; no code will have to be modified to add or remove categories or images.

Listing 8.7 IconStore init method.
//————————————————————————————————————
// init
// Initialize the IconStore object. This includes reading the
// IconStore database for the icon descriptions.
//————————————————————————————————————
public void init()
{
 // Create our canvas that will be used to display the icons
 imageCanvas = new IconCanvas();

 // Establish a connection to the JDBC driver
 connection = establishConnection();

 // Get a Hashtable containing an entry for each icon category.
 // The key is the description and the data value is the
 // category number.
 categories = getCategories(connection);

 // Setup the menu bar
 menuBar = new MenuBar();

 // File menu
 fileMenu = new Menu("File");
 fileMenu.add(new MenuItem("Save As"));
 fileMenu.add(new MenuItem("Exit"));
 menuBar.add(fileMenu);

 // Icons menu
 sectionMenu = new Menu("Icons");

 // Setup our category lists, list panel (using a CardLayout), and
 // icon menu.
 iconListPanel = new Panel();
 iconListPanel.setLayout(new CardLayout());

 lists = new List[categories.size()];
 iconDesc = new Hashtable[categories.size()];
 Enumeration e = categories.keys();
 int listNo = 0;
 String desc;

 // Loop while there are more keys (category descriptions)
 while (e.hasMoreElements()) {
 desc = (String) e.nextElement();

 // The first item in the list will be our default
 if (listNo == 0) {
 currentList = desc;
 }

 // Create a new list, with a display size of 20
 lists[listNo] = new List(20, false);

 // Create a new CardLayout panel
 iconListPanel.add(desc, lists[listNo]);

 // Add the description to the Icons menu
 sectionMenu.add(new MenuItem(desc));

 // Get a Hashtable containing an entry for each row found
 // for this category. The key is the icon description and
 // the data value is the ID.

 iconDesc[listNo] = getIconDesc(connection,
 (String) categories.get(desc), lists[listNo]);
 listNo++;
}
 // Add the Icons menu to the menu bar
 menuBar.add(sectionMenu);

 // Set the menu bar
 setMenuBar(menuBar);

 // Create a Save As file dialog box
 fileDialog = new FileDialog(this, "Save File", FileDialog.SAVE);

 // Setup our layout
 setLayout(new GridLayout(1,2));
 add(iconListPanel);
 add(imageCanvas);
}

It is very important to note how the CardLayout has been set up. Each of the lists is
added to the CardLayout with a description as a title, which, in our case, is the name of
the category. When the user selects a category from the Icons menu, we can use the
category description to set the new CardLayout list. Figure 8.2 shows the initial screen
after loading the database tables.

Figure 8.2 The IconStore main screen.

Handling Events

There are two types of events that we need to be aware of in the IconStore application:
selecting menu options and clicking on the image list to select an icon. As with the
Interactive SQL applet we discussed in Chapter 4, the event handling code is contained in
the handleEvent method, as shown in Listing 8.8.

Listing 8.8 IconStore handleEvent.
//————————————————————————————————————
// handleEvent
// Handle an event by the user.

//————————————————————————————————————
public boolean handleEvent(
 Event evt)
{
 switch (evt.id) {
 case Event.ACTION_EVENT:

 // Determine the type of event that just occurred
 if (evt.target instanceof MenuItem) {

 // The user selected a menu item. Figure out what action
 // should be taken.
 String selection = (String) evt.arg;

 // 'Save As' - Save the currently displayed icon to a file
 if (selection.equals("Save As")) {
 if (currentFile != null) {
 fileDialog.setFile("");
 fileDialog.pack();
 fileDialog.show();

 String saveFile = fileDialog.getFile();

 if (saveFile == null) {
 return true;
 }

 // If this is a new file, it will end with .*.*
 if (saveFile.endsWith(".*.*")) {
 saveFile = saveFile.substring(0,
 saveFile.length() - 4);
 // If no extension is given, append .GIF
 if (saveFile.indexOf(".") < 0) {
 saveFile += ".gif";
 }
 }
 // Copy the file. Returns true if successful.
 boolean rc = copyFile (currentFile, saveFile);
 }
 return true;
 }
 // 'Exit' - Exit the application
 else if (selection.equals("Exit")) {
 // If there was an image file, delete it
 if (currentFile != null) {
 (new File(currentFile)).delete();
 }

 System.exit(0);
 }

 // The user must have selected a different set of icons;
 // Display the proper list.
 else {
 currentList = selection;
 ((CardLayout) iconListPanel.getLayout()).show(
 iconListPanel, currentList);

 // Display the icon, if one was previously selected
 displayIcon(connection);
 return true;
 }
 }
 break;

 case Event.LIST_SELECT:
 displayIcon(connection);
 break;
 }

 return false;
}

Most of the code is very straightforward. Of interest here is how the CardLayout is
managed. When a user makes a selection from the Icons menu, the selected item (which
is the category description) is used to change the CardLayout. Remember that when the
CardLayout was created, the title of each list was the category description. Also note
that when the user selects an item from the list box (LIST_SELECT), the corresponding
image can be displayed. Listing 8.9 shows how this is done.

When the user selects Exit from the menu, the temporary image file (which is discussed
later) is deleted from disk, and the application is terminated. This is the perfect time to
close the Connection that was in use. I purposefully omitted this step to illustrate a point:
The JDBC specification states that all close operations are purely optional. It is up to the
JDBC driver to perform any necessary clean-up in the finalize methods for each object. I
strongly recommend, though, that all JDBC applications close objects when it is proper to
do so.

Listing 8.9 Loading and displaying the selected image.
//————————————————————————————————————
// displayIcon
// Display the currently selected icon.
//————————————————————————————————————
public void displayIcon(
 Connection con)
{
 // Get the proper list element
 int n = getCategoryElement(currentList);

 // Get the item selected
 String item = lists[n].getSelectedItem();

 // Only continue if an item was selected
 if (item == null) {
 return;
 }

 // Get the ID
 String id = (String) iconDesc[n].get(item);

 try {

 // Create a Statement object
 Statement stmt = con.createStatement();

 // Execute the query and process the results
 ResultSet rs = stmt.executeQuery(
 "SELECT ICON FROM ICONSTORE WHERE ID=" + id);
 // If no rows are returned, the icon was not found
 if (!rs.next()) {
 stmt.close();
 return;
 }

 // Get the data as an InputStream
 InputStream inputStream = rs.getBinaryStream(1);

 if (inputStream == null) {
 stmt.close();
 return;
 }

 // Here's where things get ugly. Currently, there is no way
 // to display an image from an InputStream. We'll create a
 // new file from the InputStream and load the Image from the
 // newly created file. We need to create a unique name for
 // each icon; the Java VM caches the image file.

 String name = myHome + "/IconStoreImageFile" + id + ".gif";

 FileOutputStream outputStream = new FileOutputStream(name);
 // Write the data
 int bytes = 0;
 byte b[] = new byte[1024];

 while (true) {
 // Read from the input. The number of bytes read is
returned.
 bytes = inputStream.read(b);

 if (bytes == -1) {
 break;
 }

 // Write the data
 outputStream.write(b, 0, bytes);
 }
 outputStream.close();
 inputStream.close();

 // Close the statement
 stmt.close();

 // Now, display the icon
 loadFile(name);

 // If there was an image file, delete it
 if (currentFile != null) {
 if (!currentFile.equals(name)) {

 (new File(currentFile)).delete();
 }
 }

 // Save our current file name
 currentFile = name;
 }
 catch (SQLException ex) {

 // An SQLException was generated. Dump the exception contents.
 // Note that there may be multiple SQLExceptions chained
 // together.

 System.out.println("\n*** SQLException caught ***\n");
 while (ex != null) {
 System.out.println("SQLState: " + ex.getSQLState());
 System.out.println("Message: " + ex.getMessage());
 System.out.println("Vendor: " + ex.getErrorCode());
 ex = ex.getNextException();
 }
 System.exit(1);
 }
 catch (java.lang.Exception ex) {
 ex.printStackTrace();
 System.exit(1);
 }

}

Notice that each time an image is selected from the list, the image is read from the
database. It could be very costly in terms of memory resources to save all of the images,
so we’ll just get the image from the database when needed. When the user selects an item
from the list, we can get the image description. This description is used to get the icon ID
from the image Hashtable. For the most part, we follow the same steps we have seen
several times before in getting results from a database. Unfortunately, we’ve had to use a
very nasty workaround here. The image is retrieved from the database as a binary
InputStream, and it is from this InputStream that we need to draw the image on our
canvas. This technique seems like it should be a simple matter, but it turns out to be
impossible as of the writing of this book. To get around this problem, the IconStore
application uses the InputStream to create a temporary file on disk, from which an
image can be loaded and drawn on the canvas. Hopefully, a method to draw images from
an InputStream will be part of Java in the future.

Figure 8.3 shows the IconStore screen after the user has selected an image from the initial
category list. Figure 8.4 shows the IconStore screen after the user has changed the
category (from the Icons menu) to sports and has made a selection.

Figure 8.3 Selecting on image from the category list box.

Figure 8.4 Changing the image category.

Saving The Image

All that’s left is to add the ability to save the image to disk. We saw previously how to
handle the Save As menu event, so we just need to be able to create the disk file. Our
workaround approach for drawing an image from an InputStream will be used to our
advantage. Because an image file has already been created, we can simply make a copy
of the temporary file. Listing 8.10 shows the code to copy a file.

Listing 8.10 Copying a file.
//————————————————————————————————————
// copyFile
// Copy the source file to the target file.
//————————————————————————————————————
public boolean copyFile(
 String source,
 String target)
{
 boolean rc = false;

 try {
 FileInputStream in = new FileInputStream(source);
 FileOutputStream out = new FileOutputStream(target);

 int bytes;
 byte b[] = new byte[1024];

 // Read chunks from the input stream and write to the output
 // stream.
 while (true) {
 bytes = in.read(b);
 if (bytes == -1) {
 break;
 }

 out.write(b, 0, bytes);
 }
 in.close();
 out.close();
 rc = true;
 }
 catch (java.lang.Exception ex) {
 ex.printStackTrace();
 }

 return rc;
}

Figure 8.5 shows the IconStore screen after the user has selected the Save As menu
option.

Figure 8.5 The IconStore Save As dialog box.

That’s all there is to it.

Summary

Let’s recap the important details that we have covered in this chapter:

• Creating a basic GUI Java application
• Opening a connection to a data source
• Using database data to create dynamic GUI
components (menus and lists)
• Handling user events
• Handling JDBC InputStreams

If you would like to take the IconStore application
further, one obvious enhancement would be to allow the
user to add images to the database. I’ll leave this as an
exercise for you. Chapter 9
Java And Database Security
Security is at the top of the list of concerns for people sharing databases on the Internet
and large intranets. In this chapter, we’ll have a look at security in Java and how
Java/JDBC security relates to database security. We’ll also have a peek at the new
security features planned for Java, which will incorporate encryption and authentication
into the JDBC.

Database Server Security

The first issue I’d like to tackle, and the first one you need to consider, is the security of
your actual database server. If you are allowing direct connections to your database
server from your Java/JDBC programs, you need to prepare for a number of potential
security pitfalls. Although security breaks are few and far between, I advise you to cover
all the angles so you don’t get caught off-guard.

Rooting Out The Packet Sniffers

Information is sent over networks in packets, and packet sniffing happens because a
computer’s network adapter is configured to read all of the packets that are sent over the
network, instead of just packets meant for that computer. Therefore, anyone with access
to a computer attached to your LAN can check out all transactions as they occur. Of
course, a well-managed network and users you can trust are the best methods of
preventing an inside job. Unfortunately, you must also consider another possibility: the
outside threat. The possibility that someone from outside your LAN might break into a
computer inside your LAN is another issue altogether; you must make sure that the other
computers on your LAN are properly secured. To prevent such a situation, a firewall is
often the best remedy. Though not completely foolproof, it does not allow indiscriminate
access to any computers that are behind the firewall from outside. There are several good
books on basic Internet security, and this book’s Website contains a list of URLs that
highlight several books on firewalls.

Packet sniffing doesn’t necessarily involve only your local network; it can occur on the
route the packet takes from the remote client machine somewhere on the Internet to your
server machine. Along one of the many “hops” a packet takes as it travels across the
Internet, a hacker who has gained entry into one of these hop points could be monitoring
the packets sent to and from your server. Although this is a remote possibility, it’s still a
possibility. One solution is to limit the IP addresses from which connections to the
database server can be made. However, IP authorization isn’t bulletproof either—IP
spoofing is a workaround for this method. For more information on these basic security
issues, please see this book’s Web site for references to security material.

Web Server CGI Holes

If you only allow local direct access to your database server via pre-written software, like
CGI scripts run from Web pages, you’ll still find yourself with a possible security hole.
Some folks with too much time on their hands take great pleasure in hacking through
CGI scripts to seek out unauthorized information. Are you vulnerable to this type of
attack? Consider this situation: You have a CGI script that searches a table. The HTML
form that gives the CGI its search information uses a field containing a table name; if a
hacker realizes that you are directly patching in the table name from the HTML page, it
would be easy to modify the CGI parameters to point to a different table. Of course, the
easy solution to this scenario is to check in the CGI script that only the table you intend to
allow to be queried can be accessed.

For in-house distribution of Java programs that access database servers, many of these
security considerations are minimal. But for Internet applications, such as a
merchandising applet where a user enters a credit card number to purchase some goods,

you not only want to send this data encrypted to the Web server, but you want to protect
the actual database server that this sensitive data is stored on.

Finding A Solution

So how do we deal with these security holes? The most straightforward way is to use a
database server that implements secure login encryption. Some database servers do this
already, and with the proliferation of “Web databases,” login encryption is likely to be
incorporated into more popular database servers in the future. The other solution, which
is more viable, is to use an application server in a three-tier system. First, the Java
program uses encryption to send login information to the application server. Then, the
application server decodes the information. And finally, the application server sends the
decoded information to the database server, which is either running on the same machine
or on a machine attached to a secure local network. We’ll discuss application servers in
more detail in Chapter 11.

Another solution involves using the Java Security API, currently under development at
Javasoft. This API, which provides classes that perform encryption and authentication,
will be a standard part of the Java API and will allow you to use plug-in classes to
perform encryption on a remote connection.

As a user, how do you know if the Java applet you’re getting is part of a front for an
illegitimate business? The Java Commerce API addresses the security issue of
determining whether an applet is from a legitimate source by using digital signatures,
authorization, and certification. Both the Java Commerce API and Java Security API will
likely be incorporated into Web browsers’ Java interpreters, and will also be linked in
heavily with the security features of the Web browser itself. At the time this manuscript
was written, however, these APIs were still under construction.

Applet Security: Can I Trust You?

As we’ve seen, setting up safe connections is quite possible. However, applet security is
an entirely different issue. This aspect of security, where an applet that has been
downloaded to your computer is running in your Web browser, has been under scrutiny
since Java-enabled Web browsers appeared.

The Applet Security Manager

Every Web browser’s Java interpreter includes a security manager to determine what an
applet can and can’t do. For instance, the security mangager does not allow applets
downloaded from remote Web pages to access the local disk; it restricts network
connections attempted by the applet to only the machine from which the applet came
from; and it restricts applets from gaining control of local system devices. These
restrictions are in place to protect users from rogue applets (or should I say rogue applet
programmers) attempting to break into your computer. The user does not need to worry
about the applet formatting the hard disk or reading password files. Of course, I’m
simplifying the applet security scheme, but I want to point out the care that is taken to

protect the user, and the restrictions that developers are faced with when programming
applets. So how does this relate to the JDBC? The immediate concern for you as the
developer is that your JDBC applet can only connect to the same machine that served the
applet initially (i.e. your Web server). This means that you must run a Web server on the
same machine as your database server. However, if you choose the application server
route that we will discuss in Chapter 11, you must run the application server alongside
the Web server, but then you are free to run the database server on another machine. If
the user installs the applet locally and runs it, these security restrictions do not apply. But
unfortunately, that defeats the purpose behind an applet: a program that comes over the
network and begins running locally without installation.

I’m A Certified Applet

To account for these tight security restrictions, the Java Commerce API addresses easing
security if the applet comes from a “trusted” source. This means that if the Web browser
recognizes as genuine the certification of the Web page, applets on the page may also be
considered “certified.” To obtain such a status, you must apply for certification from the
proper authority. When you receive certification, simply attach it to applets that are
served from your Web site. The Commerce and Security APIs allow for the fetching of
trusted applets, so if the user uses a Java interpreter that incorporates the Java Commerce
API and Security API, you (the developer) can serve applets that can connect to an
application server or database server running on a different machine than the Web server.
In fact, you can even attach to different database servers simultaneously if necessary. In
addition, this approach may allow the applet to save the contents of a database session on
the user’s disk, or read data from the user’s disk to load previous session data.

The exact security restrictions of trusted applets are not set in stone, and they may differ
depending on the Web browser the applet is run on. Also, the Java Commerce and
Security specifications and related APIs have not been finalized as of the writing of this
book, so much may change from the preliminary details of the security scheme by the
time the APIs are released and implemented.

Summary

Security in data transactions is a top priority in the Internet community. In this chapter,
we’ve discussed possible security holes and techniques to sew them up. We also took a
look at Javasoft’s approach to easing security restrictions for applets that come from a
certified trusted source.

In the next chapter, we jump back into the meat of the JDBC when we explore writing
JDBC drivers. We’ll explore the heart of the JDBC’s implementation details, and we’ll
also develop a real JDBC driver that can serve as the basis for drivers you write in the
future.

Chapter 10
Writing Database Drivers

We’ve covered a lot of territory so far in this book. Now we can put some of your newly
gained knowledge to use. In this chapter, we will explore what it takes to develop a JDBC
driver. In doing so, we will also touch on some of the finer points of the JDBC
specification. Throughout this chapter, I will use excerpts from the SimpleText JDBC
driver that is included on the CD-ROM. This driver allows you to manipulate simple text
files; you will be able to create and drop files, as well as insert and select data within a
file. The SimpleText driver is not fully JDBC-compliant, but it provides a strong starting
point for developing a driver. We’ll cover what the JDBC components provide, how to
implement the JDBC API interfaces, how to write native code to bridge to an existing
non-Java API, some finer points of driver writing, and the major JDBC API interfaces
that must be implemented.

The JDBC Driver Project: SimpleText

The SimpleText JDBC driver is just that—a JDBC driver that manipulates simple text
files, with a few added twists. It is not a full-blown relational database system, so I would
not recommend attempting to use it as one. If you are looking for a good way to
prototype a system, or need a very lightweight database system to drive a simplistic
application or applet, then SimpleText is for you. More importantly, though, the
SimpleText driver can serve as a starting point for your own JDBC driver. Before
continuing, let’s take a look at the SimpleText driver specifications.

SimpleText SQL Grammar

The SimpleText JDBC driver supports a very limited SQL grammar. This is one reason
that the driver is not JDBC compliant; a JDBC-compliant driver must support ANSI92
entry level SQL grammar. The following SQL statements define the base SimpleText
grammar:
create-table-statement ::= CREATE TABLE table-name

 (column-element [, column-
element]...)

drop-table-statement ::= DROP TABLE table-name

insert-statement ::= INSERT INTO table-name

 [(column-identifier [, column-
identifier]...)] VALUES

 (insert-value [, insert-value]...)

select-statement ::= SELECT select-list FROM table-name [WHERE search-
 condition]

The following elements are used in these SQL statements:
column-element ::= column-identifier data-type

column-identifier ::= user-defined-name

comparison-operator ::= < | > | = | <>

data-type ::= VARCHAR | NUMBER | BINARY

dynamic-parameter ::= ?

insert-value ::= dynamic-parameter | literal

search-condition ::= column-identifier comparison-operator literal

select-list ::= * | column-identifier [, column-identifier]...

table-name ::= user-defined-name

user-defined-name ::= letter [digit | letter]

What all this grammar means is that the SimpleText driver supports a CREATE TABLE
statement, a DROP TABLE statement, an INSERT statement (with parameters), and a
very simple SELECT statement (with a WHERE clause). It may not seem like much,
but this grammar is the foundation that will allow us to create a table, insert some data,
and select it back.

SimpleText File Format

The format of the files used by the SimpleText driver is, of course, very simple. The first
line contains a signature, followed by each one of the column names (and optional data
types). Any subsequent lines in the text file are assumed to be comma-separated data.
There is no size limit to the text file, but the larger the file, the longer it takes to retrieve
data (the entire file is read when selecting data; there is no index support). The data file
extension is hard coded to be .SDF (Simple Data File). For example, the statement
CREATE TABLE TEST (COL1 VARCHAR, COL2 NUMBER, COL3 BINARY)

creates a file named TEST.SDF, with the following initial data:
.SDFCOL1,#COL2,@COL3

Note that none of the SQL grammar is case-sensitive. The .SDF is the file signature (this
is how the SimpleText driver validates whether the text file can be used), followed by a
comma-separated list of column names. The first character of the column name can
specify the data type of the column. A column name starting with a # indicates a numeric
column, while a column name starting with an @ indicates a binary column. What’s that?
Binary data in a text file? Well, not quite. A binary column actually contains an offset
pointer into a sister file. This file, with an extension of .SBF (Simple Binary File),
contains any binary data for columns in the text file, as well as the length of the data
(maximum length of 1048576 bytes). Any other column name is considered to be
character data (with a maximum length of 5120 bytes). The following statement shows
how data is inserted into the TEST table:
INSERT INTO TEST VALUES ('FOO', 123, '0123456789ABCDEF')

After the INSERT, TEST.SDF will contain the following data:
.SDFCOL1,#COL2,@COL3
FOO,123,0

COL3 contains an offset of zero since this is the first row in the file. This is the offset
from within the TEST.SBF table in which the binary data resides. Starting at the given
offset, the first four bytes will be the length indicator, followed by the actual binary data
that was inserted. Note that any character or binary data must be enclosed in single
quotation marks.

We’ll be looking at plenty of code from the SimpleText driver throughout this chapter.
But first, let’s start by exploring what is provided by the JDBC developer’s kit.

The DriverManager

The JDBC DriverManager is a static class that provides services to connect to JDBC
drivers. The DriverManager is provided by JavaSoft and does not require the driver
developer to perform any implementation. Its main purpose is to assist in loading and
initializing a requested JDBC driver. Other than using the DriverManager to register a
JDBC driver (registerDriver) to make itself known and to provide the logging facility
(which is covered in detail later), a driver does not interface with the DriverManager. In
fact, once a JDBC driver is loaded, the DriverManager drops out of the picture all
together, and the application or applet interfaces with the driver directly.

JDBC Exception Types

JDBC provides special types of exceptions to be used by a driver: SQLException,
SQLWarning, and DataTruncation. The SQLException class is the foundation for the
other types of JDBC exceptions, and extends java.lang.Exceptn. When created, an
SQLException can have three pieces of information: a String describing the error, a
String containing the XOPEN SQLstate (as described in the XOPEN SQL specification),
and an int containing an additional vendor or database-specific error code. Also note that
SQLExceptions can be chained together; that is, multiple SQLExceptions can be thrown
for a single operation. The following code shows how an SQLException is thrown:
//--

// fooBar
// Demonstrates how to throw an SQLException
//--

public void fooBar()
 throws SQLException
{
 throw new SQLException("I just threw a SQLException");
}

Here’s how you call fooBar and catch the SQLException:
try {
 fooBar();
}
catch (SQLException ex) {

 // If an SQLException is thrown, we'll end up here. Output the error

 // message, SQLstate, and vendor code.
 System.out.println("A SQLException was caught!");
 System.out.println("Message: " + ex.getMessage());
 System.out.println("SQLState: " + ex.getSQLState());
 System.out.println("Vendor Code: " + ex.getErrorCode());
}

An SQLWarning is similar to an SQLException (it extends SQLException). The main
difference is in semantics. If an SQLException is thrown, it is considered to be a critical
error (one that needs attention). If an SQLWarning is thrown, it is considered to be a
non-critical error (a warning or informational message). For this reason, JDBC treats
SQLWarnings much differently than SQLExceptions. SQLExceptions are thrown just
like any other type of exception; SQLWarnings are not thrown, but put on a list of
warnings on an owning object type (for instance, Connection, Statement, or ResultSet,
which we’ll cover later). Because they are put on a list, it is up to the application to poll
for warnings after the completion of an operation. Listing 10.1 shows a method that
accepts an SQLWarning and places it on a list.

Listing 10.1 Placing an SQL Warning on a list.
//--

// setWarning
// Sets the given SQLWarning in the warning chain. If null, the
// chain is reset. The local attribute lastWarning is used
// as the head of the chain.
//--- ------

protected void setWarning(
 SQLWarning warning)
{

 // A null warning can be used to clear the warning stack
 if (warning == null) {
 lastWarning = null;
 }
 else {
 // Set the head of the chain. We'll use this to walk through the
 // chain to find the end.
 SQLWarning chain = lastWarning;

 // Find the end of the chain. When the current warning does
 // not have a next pointer, it must be the end of the chain.
 while (chain.getNextWarning() != null) {
 chain = chain.getNextWarning();
 }

 // We're at the end of the chain. Add the new warning
 chain.setNextWarning(warning);
 }
}

Listing 10.2 uses this method to create two SQLWarnings and chain them together.

Listing 10.2 Chaining SQLWarnings together.

//--
-
// fooBar
// Do nothing but put two SQLWarnings on our local
// warning stack (lastWarning).
//--
--
protected void fooBar()
{

 // First step should always be to clear the stack. If a warning
 // is lingering, it will be discarded. It is up to the application
to
 // check and clear the stack.
 setWarning(null);

 // Now create our warnings
 setWarning(new SQLWarning("Warning 1"));
 setWarning(new SQLWarning("Warning 2"));
}

Now we’ll call the method that puts two SQLWarnings on our warning stack, then poll
for the warning using the JDBC method getWarnings, as shown in Listing 10.3.

Listing 10.3 Polling for warnings.
// Call fooBar to create a warning chain
fooBar();

// Now, poll for the warning chain. We'll simply dump any warning
// messages to standard output.
SQLWarning chain = getWarnings();

if (chain != null) {
 System.out.println("Warning(s):");

 // Display the chain until no more entries exist
 while (chain != null) {
 System.out.println("Message: " + chain.getMessage());

 // Advance to the next warning in the chain. null will be
 // returned if no more entries exist.
 chain = chain.getNextWarning();

 }
}

DataTruncation objects work in the same manner as SQLWarnings. A
DataTruncation object indicates that a data value that was being read or written was
truncated, resulting in a loss of data. The DataTruncation class has attributes that can be
set to specify the column or parameter number, whether a truncation occurred on a read
or a write, the size of the data that should have been transferred, and the number of bytes
that were actually transferred. We can modify our code from Listing 10.2 to include the
handling of DataTruncation objects, as shown in Listing 10.4.

Listing 10.4 Creating dDataTruncation warnings.

//--
--
// fooBar
// Do nothing but put two SQLWarnings on our local
// warning stack (lastWarning) and a DataTruncation
// warning.
//--
--
protected void fooBar()
{

 // First step should always be to clear the stack. If a warning
 // is lingering, it will be discarded. It is up to the application
to
 // check and clear the stack.
 setWarning(null);

 // Now create our warnings
 setWarning(new SQLWarning("Warning 1"));
 setWarning(new SQLWarning("Warning 2"));

 // And create a DataTruncation indicating that a truncation
 // occurred on column 1, 1000 bytes were requested to
 // read, and only 999 bytes were read.
 setWarning(new DataTruncation(1, false, true, 1000, 999);
}

Listing 10.5 shows the modified code to handle the DataTruncation.

Listing 10.5 Processing DataTruncation warnings.
// Call fooBar to create a warning chain
fooBar();

// Now, poll for the warning chain. We'll simply dump any warning
// messages to standard output.
SQLWarning chain = getWarnings();

if (chain != null) {
 System.out.println("Warning(s):");

 // Display the chain until no more entries exist
 while (chain != null) {
 // The only way we can tell if this warning is a DataTruncation
 // is to attempt to cast it. This may fail, indicating that
 // it is just an SQLWarning.
 try {
 DataTruncation trunc = (DataTruncation) chain;
 System.out.println("Data Truncation on column: " +
 trunc.getIndex());
 }
 catch (Exception ex) {
 System.out.println("Message: " + chain.getMessage());
 }

 // Advance to the next warning in the chain. null will be
 // returned if no more entries exist.
 chain = chain.getNextWarning();
 }
}

JDBC Data Types

The JDBC specification provides definitions for all of the SQL data types that can be
supported by a JDBC driver. Only a few of these data types may be natively supported by
a given database system, which is why data coercion becomes such a vital service (we’ll
discuss data coercion a little later in this chapter). The data types are defined in
Types.class:
public class Types
{

 public final static int BIT = -7;
 public final static int TINYINT = -6;
 public final static int SMALLINT = 5;
 public final static int INTEGER = 4;
 public final static int BIGINT = -5;
 public final static int FLOAT = 6;
 public final static int REAL = 7;
 public final static int DOUBLE = 8;
 public final static int NUMERIC = 2;
 public final static int DECIMAL = 3;
 public final static int CHAR = 1;
 public final static int VARCHAR = 12;
 public final static int LONGVARCHAR = -1;
 public final static int DATE = 91;
 public final static int TIME = 92;
 public final static int TIMESTAMP = 93;
 public final static int BINARY = -2;
 public final static int VARBINARY = -3;
 public final static int LONGVARBINARY = -4;
 public final static int OTHER = 1111;
}

At a minimum, a JDBC driver must support one (if not all) of the character data types
(CHAR, VARCHAR, and LONGVARCHAR). A driver may also support driver-
specific data types (OTHER) which can only be accessed in a JDBC application as an
Object. In other words, you can get data as some type of object and put it back into a
database as that same type of object, but the application has no idea what type of data is
actually contained within. Let’s take a look at each of the data types more closely.

Character Data: CHAR, VARCHAR, And LONGVARCHAR

CHAR, VARCHAR, and LONGVARCHAR data types are used to express character
data. These data types are represented in JDBC as Java String objects. Data of type
CHAR is represented as a fixed-length String, and may include some padding spaces to
ensure that it is the proper length. If data is being written to a database, the driver must
ensure that the data is properly padded. Data of type VARCHAR is represented as a
variable-length String, and is trimmed to the actual length of the data.

LONGVARCHAR data can be either a variable-length String or returned by the driver
as a Java InputStream, allowing the data to be read in chunks of whatever size the
application desires.

Exact Numeric Data: NUMERIC And DECIMAL

The NUMERIC and DECIMAL data types are used to express signed, exact numeric
values with a fixed number of decimal places. These data types are often used to
represent currency values. NUMERIC and DECIMAL data are both represented in
JDBC as Numeric objects. The Numeric class is new with JDBC, and we’ll be
discussing it shortly.

Binary Data: BINARY, VARBINARY, And LONGVARBINARY

The BINARY, VARBINARY, and LONGVARBINARY data types are used to express
binary (non-character) data. These data types are represented in JDBC as Java byte
arrays. Data of type BINARY is represented as a fixed-length byte array, and may
include some padding zeros to ensure that it is the proper length. If data is being written
to a database, the driver must ensure that the data is properly padded. Data of type
VARBINARY is represented as a variable-length byte array, and is trimmed to the actual
length of the data. LONGVARBINARY data can either be a variable-length byte array
or returned by the driver as a Java InputStream, allowing the data to be read in chunks
of whatever size the application desires.

Boolean Data: BIT

The BIT data type is used to represent a boolean value—either true or false—and is
represented in JDBC as a Boolean object or boolean data type.

Integer Data: TINYINT, SMALLINT, INTEGER, And BIGINT

The TINYINT, SMALLINT, INTEGER, and BIGINT data types are used to represent
signed integer data. Data of type TINYINT is represented in JDBC as a Java byte data
type (1 byte), with a minimum value of -128 and a maximum value of 127. Data of type
SMALLINT is represented in JDBC as a Java short data type (2 bytes), with a minimum
value of -32,768 and a maximum value of 32,767. Data of type INTEGER is represented
as a Java int data type (4 bytes), with a minimum value of -2,147,483,648 and a
maximum value of 2,147,483,647. Data of type BIGINT is represented as a Java long
data type (8 bytes), with a minimum value of -9,223,372,036,854,775,808 and a
maximum value of 9,223,372,036,854,775,807.

Floating-Point Data: REAL, FLOAT, And DOUBLE

The REAL, FLOAT, and DOUBLE data types are used to represent signed,
approximate values. Data of type REAL supports seven digits of mantissa precision, and
is represented as a Java float data type. Data of types FLOAT and DOUBLE support 15
digits of mantissa precision, and are represented as Java double data types.

Time Data: DATE, TIME, And TIMESTAMP

The DATE, TIME, and TIMESTAMP data types are used to represent dates and times.
Data of type DATE supports specification of the month, day, and year, and is represented
as a JDBC Date object. Data of type TIME supports specification of the hour, minutes,
seconds, and milliseconds, and is represented as a JDBC Time object. Data of type
TIMESTAMP supports specification of the month, day, year, hour, minutes, seconds,
and milliseconds, and is represented as a JDBC Timestamp object. The Date, Time, and
Timestamp objects, which we’ll get into a bit later, are new with JDBC.

New Data Classes

Numeric

As mentioned before, the Numeric class was introduced with the JDBC API to represent
signed, exact numeric values with a fixed number of decimal places. This class is ideal
for representing monetary values, allowing accurate arithmetic operations and
comparisons. Another aspect is the ability to change the rounding value. Rounding is
performed if the value of the scale (the number of fixed decimal places) plus one digit to
the right of the decimal point is greater than the rounding value. By default, the rounding
value is 4. For example, if the result of an arithmetic operation is 2.495, and the scale is
2, the number is rounded to 2.50. Listing 10.6 provides an example of changing the
rounding value. Imagine that you are a devious retailer investigating ways to maximize
your profit by adjusting the rounding value.

import java.sql.*;

 public static void main(String args[]) {

 // Set our price and discount amounts
 Numeric price = new Numeric(4.91, 2);

Tip: Be aware of date limitations.
One important note about Date and Timestamp objects:
The Java calendar starts at January 1, 1970, which means
that you cannot represent dates prior to 1970.

The JDBC API introduced several new data classes. These classes were developed to
solve specific data-representation problems like how to accurately represent fixed-
precision numeric values (such as currency values) for NUMERIC and DECIMAL data
types, and how to represent time data for DATE, TIME, and TIMESTAMP data types.

Listing 10.6 Changing the rounding value.

class NumericRoundingValueTest {

 Numeric discount = new Numeric(0.15, 2);
 Numeric newPrice;

 // Give the item a discount
 newPrice = discountItem(price, discount);

 System.out.println("discounted price="+newPrice.toString());

 // Now, give the item a discount with a higher rounding value.
 // This will lessen the discount amount in many cases.
 discount.setRoundingValue(9);

 newPrice = discountItem(price, discount);

 System.out.println("discounted price with high rounding="+
 newPrice.toString());
 }

 // Perform the calculation to discount a price
 public static Numeric discountItem(
 Numeric price,
 Numeric discount)
 {
 return price.subtract(price.multiply(discount));
 }
}

Listing 10.6 produces the following output:
discounted price=004.17
discounted price with high rounding=004.18

Date

The Date class is used to represent dates in the ANSI SQL format YYYY-MM-DD,
where YYYY is a four-digit year, MM is a two-digit month, and DD is a two-digit day.
The JDBC Date class extends the existing java.util.Date class (setting the hour, minutes,
and seconds to zero) and, most importantly, adds two methods to convert Strings into
dates, and vice-versa:
// Create a Date object with a date of June 30th, 1996
Date d = Date.valueOf("1996-06-30");

// Print the date
System.out.println("Date=" + d.toString());

// Same thing, without leading zeros
Date d2 = Date.valueOf("1996-6-30");
System.out.println("Date=" + d2.toString());

The Date class also serves very well in validating date values. If an invalid date string is
passed to the valueOf method, a java.lang.IllegalArgument-Exception is thrown:
String s;

// Get the date from the user
.
.
.
// Validate the date
try {
 Date d = Date.valueOf(s);
}
catch (java.lang.IllegalArgumentException ex) {

 // Invalid date, notify the application
 .
 .
 .
}

It is worth mentioning again that the Java date epoch is January 1, 1970; therefore, you
cannot represent any date values prior to January 1, 1970, with a Date object.

Time

The Time class is used to represent times in the ANSI SQL format HH:MM:SS, where
HH is a two-digit hour, MM is a two-digit minute, and SS is a two-digit second. The
JDBC Time class extends the existing java.util.Date class (setting the year, month, and
day to zero) and, most importantly, adds two methods to convert Strings into times, and
vice-versa:
// Create a Time object with a time of 2:30:08 pm
Time t = Time.valueOf("14:30:08");

// Print the time
System.out.println("Time=" + t.toString());

// Same thing, without leading zeros
Time t2 = Time.valueOf("14:30:8");
System.out.println("Time=" + t2.toString());

The Time class also serves very well in validating time values. If an invalid time string is
passed to the valueOf method, a java.lang.IllegalArgument-Exception is thrown:
String s;

// Get the time from the user
.
.
.
// Validate the time
try {
 Time t = Time.valueOf(s);
}
catch (java.lang.IllegalArgumentException ex) {
 // Invalid time, notify the application
 .
 .
 .
}

Timestamp

The Timestamp class is used to represent a combination of date and time values in the
ANSI SQL format YYYY-MM-DD HH:MM:SS.F..., where YYYY is a four-digit year,
MM is a two-digit month, DD is a two-digit day, HH is a two-digit hour, MM is a two-
digit minute, SS is a two-digit second, and F is an optional fractional second up to nine
digits in length. The JDBC Timestamp class extends the existing java.util.Date class

(adding the fraction seconds) and, most importantly, adds two methods to convert Strings
into timestamps, and vice-versa:
// Create a Timestamp object with a date of 1996-06-30 and a time of
// 2:30:08 pm.
Timestamp t = Timestamp.valueOf("1996-06-30 14:30:08");

// Print the timestamp

System.out.println("Timestamp=" + t.toString());

// Same thing, without leading zeros
Timestamp t2 = Timestamp.valueOf("1996-6-30 14:30:8");
System.out.println("Timestamp=" + t2.toString());

The Timestamp class also serves very well in validating timestamp values. If an invalid
time string is passed to the valueOf method, a java.lang.Illegal-ArgumentException is
thrown:
String s;

// Get the timestamp from the user
.
.
.
// Validate the timestamp
try {
 Timestamp t = Timestamp.valueOf(s);
}
catch (java.lang.IllegalArgumentException ex) {
 // Invalid timestamp, notify the application
 .
 .
 .
}

As is the case with the Date class, the Java date epoch is January 1, 1970; therefore, you
cannot represent any date values prior to January 1, 1970, with a Timestamp object.

Native Drivers: You’re Not From Around Here, Are Ya?

Before beginning to implement a JDBC driver, the first question that must be answered
is: Will this driver be written completely in Java, or will it contain native (machine
dependent) code? You may be forced to use native code because many major database
systems—such as Oracle, Sybase, and SQLServer—do not provide Java client software.
In this case, you will need to write a small library containing C code to bridge from Java
to the database client API (the JDBC to ODBC Bridge is a perfect example). The obvious
drawback is that the JDBC driver is not portable and cannot be automatically downloaded
by today’s browsers.

If a native bridge is required for your JDBC driver, you should keep a few things in mind.
First, do as little as possible in the C bridge code; you will want to keep the bridge as
small as possible, ideally creating just a Java wrapper around the C API. Most
importantly, avoid the temptation of performing memory management in C (i.e. malloc).
This is best left in Java code, since the Java Virtual Machine so nicely takes care of

garbage collection. Secondly, keep all of the native method declarations in one Java class.
By doing so, all of the bridge routines will be localized and much easier to maintain.
Finally, don’t make any assumptions about data representation. An integer value may be
2 bytes on one system, and 4 bytes on another. If you are planning to port the native
bridge code to a different system (which is highly likely), you should provide native
methods that provide the size and interpretation of data.

Listing 10.7 illustrates these suggestions. This module contains all of the native method
declarations, as well as the code to load our library. The library will be loaded when the
class is instantiated.

Listing 10.7 Java native methods.
//--
--
// MyBridge.java
//
// Sample code to demonstrate the use of native methods
//--
--
package jdbc.test;

import java.sql.*;

public class MyBridge
 extends Object
{
 //--
--
 // Constructor
 // Attempt to load our library. If it can't be loaded, an
 // SQLException will be thrown.
 //--
--
 public MyBridge()
 throws SQLException
 {
 try {
 // Attempt to load our library. For Win95/NT, this will
 // be myBridge.dll. For Unix systems, this will be
 // libmyBridge.so.
 System.loadLibrary("myBridge");
 }
 catch (UnsatisfiedLinkError e) {
 throw new SQLException("Unable to load myBridge library");
 }
 }
 //--
--
 // Native method declarations
//--

 // Get the size of an int
 public native int getINTSize();

 // Given a byte array, convert it to an integer value
 public native int getINTValue(byte intValue[]);

 // Call some C function that does something with a String, and
 // returns an integer value.
 public native void callSomeFunction(String stringValue, byte
 intValue[]);
}

Once this module has been compiled (javac), a Java generated header file and C file must
be created:
javah jdbc.test.MyBridge
javah -stubs jdbc.test.MyBridge

These files provide the mechanism for the Java and C worlds to communicate with each
other. Listing 10.8 shows the generated header file (jdbc_test_MyBridge.h, in this case),
which will be included in our C bridge code.

Listing 10.8 Machine-generated header file for native methods.
/* DO NOT EDIT THIS FILE - it is machine generated */
#include <native.h>
/* Header for class jdbc_test_MyBridge */

#ifndef _Included_jdbc_test_MyBridge
#define _Included_jdbc_test_MyBridge

typedef struct Classjdbc_test_MyBridge {
 char PAD; /* ANSI C requires structures to have at least one member
*/
} Classjdbc_test_MyBridge;
HandleTo(jdbc_test_MyBridge);

#ifdef __cplusplus
extern "C" {
#endif
__declspec(dllexport) long jdbc_test_MyBridge_getINTSize(struct
Hjdbc_test_MyBridge *);
__declspec(dllexport) long jdbc_test_MyBridge_getINTValue(struct
Hjdbc_test_MyBridge *,HArrayOfByte *);
struct Hjava_lang_String;
__declspec(dllexport) void jdbc_test_MyBridge_callSomeFunction(struct
Hjdbc_test_MyBridge *,struct Hjava_lang_String *,HArrayOfByte *);
#ifdef __cplusplus
}
#endif
#endif

The generated C file (shown in Listing 10.9) must be compiled and linked with the
bridge.

Listing 10.9 Machine-generated C file for native methods.
/* DO NOT EDIT THIS FILE - it is machine generated */
#include <StubPreamble.h>

/* Stubs for class jdbc/test/MyBridge */
/* SYMBOL: "jdbc/test/MyBridge/getINTSize()I",
Java_jdbc_test_MyBridge_getINTSize_stub */
__declspec(dllexport) stack_item
*Java_jdbc_test_MyBridge_getINTSize_stub(stack_item *_P_,struct
execenv
*_EE_) {
 extern long jdbc_test_MyBridge_getINTSize(void *);
 P[0].i = jdbc_test_MyBridge_getINTSize(_P_[0].p);
 return _P_ + 1;
 }
 /* SYMBOL: "jdbc/test/MyBridge/getINTValue([B)I",
 Java_jdbc_test_MyBridge_getINTValue_stub */
 __declspec(dllexport) stack_item
 *Java_jdbc_test_MyBridge_getINTValue_stub(stack_item *_P_,struct
execenv *_EE_) {
 extern long jdbc_test_MyBridge_getINTValue(void *,void *);
 P[0].i = jdbc_test_MyBridge_getINTValue(_P_[0].p,((_P_[1].p)));
 return _P_ + 1;
}
/* SYMBOL:
"jdbc/test/MyBridge/callSomeFunction(Ljava/lang/String;[B)V",
Java_jdbc_test_MyBridge_callSomeFunction_stub */
__declspec(dllexport) stack_item
*Java_jdbc_test_MyBridge_callSomeFunction_stub(stack_item *_P_,struct
execenv *_EE_) {
 extern void jdbc_test_MyBridge_callSomeFunction(void *,void
*,void
 *);
 (void)
jdbc_test_MyBridge_callSomeFunction(_P_[0].p,((_P_[1].p)),
 ((_P_[2].p)));return _P_;
}

The bridge code is shown in Listing 10.10. The function prototypes were taken from the
generated header file.

Listing 10.10 Bridge code.
//--
--
// MyBridge.c
//
// Sample code to demonstrate the use of native methods
//--
--
#include <stdio.h>
#include <ctype.h>
#include <string.h>

// Java internal header files
#include "StubPreamble.h"
#include "javaString.h"

// Our header file generated by JAVAH
#include "jdbc_test_MyBridge.h"

//--
--
// getINTSize
// Return the size of an int
//--
--
long jdbc_test_MyBridge_getINTSize(
 struct Hjdbc_test_MyBridge *caller)
{
 return sizeof(int);
}

//--
--
// getINTValue
// Given a buffer, return the value as an int
//--
--
long jdbc_test_MyBridge_getINTValue(
 struct Hjdbc_test_MyBridge *caller,
 HArrayOfByte *buf)
{
 // Cast our array of bytes to an integer pointer
 int* pInt = (int*) unhand (buf)->body;

 // Return the value
 return (long) *pInt;
}

//--
--
// callSomeFunction
// Call some function that takes a String and an int pointer as
arguments
//--
--
void jdbc_test_MyBridge_callSomeFunction(
 struct Hjdbc_test_MyBridge *caller,
 struct Hjava_lang_String *stringValue,
 HArrayOfByte *buf)
{

 // Cast the string into a char pointer
 char* pString = (char*) makeCString (stringValue);

 // Cast our array of bytes to an integer pointer
 int* pInt = (int*) unhand (buf)->body;

 // This fictitious function will print the string, then return the
 // length of the string in the int pointer.
 printf("String value=%s\n", pString);
 *pInt = strlen(pString);
}

Now, create a library (DLL or Shared Object) by compiling this module and linking it
with the jdbc_test_MyDriver compiled object and the one required Java library, javai.lib.
Here’s the command line I used to build it for Win95/NT:
cl -DWIN32 mybridge.c jdbc_test_mybridge.c -FeMyBridge.dll -MD -LD
javai.lib

Now we can use our native bridge, as shown in Listing 10.11.

Listing 10.11 Implementing the bridge.
import jdbc.test.*;
import java.sql.*;

class Test {

 public static void main (String args[]) {

 MyBridge myBridge = null;
 boolean loaded = false;

 try {

 // Create a new bridge object. If it is unable to load our
 // native library, an SQLException will be thrown.
 myBridge = new MyBridge();
 loaded = true;
 }
 catch (SQLException ex) {
 System.out.println("SQLException: " + ex.getMessage());
 }

 // If the bridge was loaded, use the native methods
 if (loaded) {

 // Allocate storage for an int
 byte intValue[] = new byte[myBridge.getINTSize()];

 // Call the bridge to perform some function with a string,
 // returning a value in the int buffer.
 myBridge.callSomeFunction("Hello, World.", intValue);

 // Get the value out of the buffer.
 int n = myBridge.getINTValue(intValue);

 System.out.println("INT value=" + n);
 }
 }
}

Listing 10.11 produces the following output:
String value=Hello, World.
INT value=13

As you can see, using native methods is very straightforward. Developing a JDBC driver
using a native bridge is a natural progression for existing database systems that provide a

C API. The real power and ultimate solution, though, is to develop non-native JDBC
drivers—those consisting of 100 percent Java code.

Implementing Interfaces

The JDBC API specification provides a series of interfaces that must be implemented by
the JDBC driver developer. An interface declaration creates a new reference type
consisting of constants and abstract methods. An interface cannot contain any
implementations (that is, executable code). What does all of this mean? The JDBC API
specification dictates the methods and method interfaces for the API, and a driver must
fully implement these interfaces. A JDBC application makes method calls to the JDBC
interface, not a specific driver. Because all JDBC drivers must implement the same
interface, they are interchangeable.

There are a few rules that you must follow when implementing interfaces. First, you must
implement the interface exactly as specified. This includes the name, return value,
parameters, and throws clause. Secondly, you must be sure to implement all interfaces as
public methods. Remember, this is the interface that other classes will see; if it isn’t
public, it can’t be seen. Finally, all methods in the interface must be implemented. If you
forget, the Java compiler will kindly remind you.

Take a look at Listing 10.12 for an example of how interfaces are used. The code defines
an interface, implements the interface, and then uses the interface.

Listing 10.12 Working with interfaces.
//--
--
// MyInterface.java
//
// Sample code to demonstrate the use of interfaces
//--
--
package jdbc.test;

public interface MyInterface
{
 //--
--
 // Define 3 methods in this interface
//--
 void method1();
 int method2(int x);
 String method3(String y);
}
//--
--
// MyImplementation.java
//
// Sample code to demonstrate the use of interfaces

//--
--

package jdbc.test;

public class MyImplementation
 implements jdbc.test.MyInterface
{
//--
 // Implement the 3 methods in the interface
//--
 public void method1()
 {
 }

 public int method2(int x)
 {
 return addOne(x);
 }

 public String method3(String y)
 {
 return y;
 }
 //--
--
 // Note that you are free to add methods and attributes to this
 // new class that were not in the interface, but they cannot be
 // seen from the interface.
//--
 protected int addOne(int x)
 {
 return x + 1;
 }
}
//--
--
// TestInterface.java
//
// Sample code to demonstrate the use of interfaces
//--
--
import jdbc.test.*;

class TestInterface {

 public static void main (String args[])
 {
 // Create a new MyImplementation object. We are assigning the
 // new object to a MyInterface variable, thus we will only be
 // able to use the interface methods.
 MyInterface myInterface = new MyImplementation();

 // Call the methods
 myInterface.method1();
 int x = myInterface.method2(1);
 String y = myInterface.method3("Hello, World.");

 }
}

As you can see, implementing interfaces is easy. We’ll go into more detail with the major
JDBC interfaces later in this chapter. But first, we need to cover some basic foundations
that should be a part of every good JDBC driver.

Tracing

One detail that is often overlooked by software developers is providing a facility to
enable debugging. The JDBC API does provide methods to enable and disable tracing,
but it is ultimately up to the driver developer to provide tracing information in the driver.
It becomes even more critical to provide a detailed level of tracing when you consider the
possible wide-spread distribution of your driver. People from all over the world may be
using your software, and they will expect a certain level of support if problems arise. For
this reason, I consider it a must to trace all of the JDBC API method calls (so that a
problem can be re-created using the output from a trace).

Turning On Tracing

The DriverManager provides a method to set the tracing PrintStream to be used for all
of the drivers; not only those that are currently active, but any drivers that are
subsequently loaded. Note that if two applications are using JDBC, and both have turned
tracing on, the PrintStream that is set last will be shared by both applications. The
following code snippet shows how to turn tracing on, sending any trace messages to a
local file:
try {
 // Create a new OuputStream using a file. This may fail if the
 // calling application/applet does not have the proper security
 // to write to a local disk.
 java.io.OutputStream outFile = new
 java.io.FileOutputStream("jdbc.out");

 // Create a PrintStream object using our newly created OuputStream
 // object. The second parameter indicates to flush all output with
 // each write. This ensures that all trace information gets
written
 // into the file.
 java.io.PrintStream outStream = new java.io.PrintStream(outFile,
 true);

 // Enable the JDBC tracing, using the PrintStream
 DriverManager.setLogStream(outStream);
}
catch (Exception ex) {
 // Something failed during enabling JDBC tracing. Notify the
 // application that tracing is not available.
 .
 .
 .
}

Using this code, a new file named jdbc.out will be created (if an existing file already
exists, it will be overwritten), and any tracing information will be saved in the file.

Writing Tracing Information

The DriverManager also provides a method to write information to the tracing
OutputStream. The println method will first check to ensure that a trace
OutputStream has been registered, and if so, the println method of the OutputStream
will be called. Here’s an example of writing trace information:
// Send some information to the JDBC trace OutputStream
String a = "The quick brown fox ";
String b = "jumped over the ";
String c = "lazy dog";

DriverManager.println("Trace=" + a + b + c);

In this example, a String message of “Trace=The quick brown fox jumped over the lazy
dog” will be constructed, the message will be provided as a parameter to the
DriverManager.println method, and the message will be written to the OutputStream
being used for tracing (if one has been registered).

Some of the JDBC components are also nice enough to provide tracing information. The
DriverManager object traces most of its method calls. SQLException also sends trace
information whenever an exception is thrown. If you were to use the previous code
example and enable tracing to a file, the following example output will be created when
attempting to connect to the SimpleText driver:
DriverManager.initialize: jdbc.drivers = null
JDBC DriverManager initialized
registerDriver:
driver[className=jdbc.SimpleText.SimpleTextDriver,context=null,
jdbc.SimpleText.SimpleTextDriver@1393860]
DriverManager.getConnection("jdbc:SimpleText")
trying
driver[className=jdbc.SimpleText.SimpleTextDriver,context=null,
jdbc.SimpleText.SimpleTextDriver@1393860]
driver[className=jdbc.SimpleText.SimpleTextDriver,context=null,j
dbc.SimpleText.SimpleTextDriver@1393860]

Checking For Tracing

I have found it quite useful for both the application and the driver to be able to test for the
presence of a tracing PrintStream. The JDBC API provides us with a method to
determine if tracing is enabled, as shown here:
//--
--
// traceOn
// Returns true if tracing (logging) is currently enabled
//--
--
public static boolean traceOn()

{

 // If the DriverManager log stream is not null, tracing
 // must be currently enabled.

}

// Before setting tracing on, check to make sure that tracing is not
// already turned on. If it is, notify the application.

 // Issue a warning that tracing is already enabled
 .

 .
}

// Send some information to the JDBC trace OutputStream
String a = "The quick brown fox ";

String c = "lazy dog";

if (traceOn()) {
 DriverManager.println("Trace=" + a + b + c);

Data Coercion

At the heart of every JDBC driver is data. That is the whole purpose of the driver:
providing data. Not only providing it, but providing it in a requested format. This is what
data coercion is all about—converting data from one format to another. As Figure 10.1
shows, JDBC specifies the necessary conversions.

Figure 10.1 JDBC data conversion table.

 return (DriverManager.getLogStream() != null);

From an application, you can use this method to check if tracing has been previously
enabled before blindly setting it:

if (traceOn()) {

 .

From the driver, I use this method to check for tracing before attempting to send
information to the PrintStream. In the example where we traced the message text of
“Trace=The quick brown fox jumped over the lazy dog,” a lot had to happen before the
message was sent to the DriverManager.println method. All of the given String objects
had to be concatenated, and a new String had to be constructed. That’s a lot of overhead
to go through before even making the println call, especially if tracing is not enabled
(which will probably be the majority of the time). So, for performance reasons, I prefer to
ensure that tracing has been enabled before assembling my trace message:

String b = "jumped over the ";

// Make sure tracing has been enabled

}

In order to provide reliable data coercion, a data wrapper class should be used. This class
contains a data value in some known format and provides methods to convert it to a
specific type. As an example, I have included the CommonValue class from the
SimpleText driver in Listing 10.13. This class has several overloaded constructors that
accept different types of data values. The data value is stored within the class, along with
the type of data (String, Integer, etc.). A series of methods are then provided to get the
data in different formats. This class greatly reduces the burden of the JDBC driver
developer, and can serve as a fundamental class for any number of drivers.

Listing 10.13 The CommonValue class.
package jdbc.SimpleText;

import java.sql.*;

public class CommonValue
 extends Object
{
 //--

 // Constructors
//--
--
 public CommonValue()
 {
 data = null;
 }

 public CommonValue(String s)
 {
 data = (Object) s;
 internalType = Types.VARCHAR;
 }

 public CommonValue(int i)
 {
 data = (Object) new Integer(i);
 internalType = Types.INTEGER;
 }

 public CommonValue(Integer i)
 {
 data = (Object) i;
 internalType = Types.INTEGER;
 }

 public CommonValue(byte b[])
 {
 data = (Object) b;
 internalType = Types.VARBINARY;
 }

//--
-
 // isNull

 // returns true if the value is null
//--
--
 public boolean isNull()
 {
 return (data == null);
 }
 //--

 // getMethods
//--
--

 // Attempt to convert the data into a String. All data types
 // should be able to be converted.
 public String getString()
 throws SQLException
 {
 String s;

 // A null value always returns null
 if (data == null) {
 return null;
 }

 switch(internalType) {

 case Types.VARCHAR:
 s = (String) data;
 break;

 case Types.INTEGER:
 s = ((Integer) data).toString();
 break;

 case Types.VARBINARY:
 {
 // Convert a byte array into a String of hex digits
 byte b[] = (byte[]) data;
 int len = b.length;
 String digits = "0123456789ABCDEF";
 char c[] = new char[len * 2];

 for (int i = 0; i < len; i++) {
 c[i * 2] = digits.charAt((b[i] >> 4) & 0x0F);
 c[(i * 2) + 1] = digits.charAt(b[i] & 0x0F);
 }
 s = new String(c);
 }
 break;

 default:
 throw new SQLException("Unable to convert data type to
 String: " +
 internalType);
 }

 return s;
 }

 // Attempt to convert the data into an int
 public int getInt()
 throws SQLException
 {
 int i = 0;

 // A null value always returns zero
 if (data == null) {
 return 0;
 }

 switch(internalType) {

 case Types.VARCHAR:
 i = (Integer.valueOf((String) data)).intValue();
 break;

 case Types.INTEGER:
 i = ((Integer) data).intValue();
 break;

 default:
 throw new SQLException("Unable to convert data type to
 String: " +
 internalType);
 }

 return i;
 }

 // Attempt to convert the data into a byte array
 public byte[] getBytes()
 throws SQLException
 {
 byte b[] = null;

 // A null value always returns null
 if (data == null) {
 return null;
 }

 switch(internalType) {

 case Types.VARCHAR:
 {

 // Convert the String into a byte array. The String must
 // contain an even number of hex digits.
 String s = ((String) data).toUpperCase();
 String digits = "0123456789ABCDEF";
 int len = s.length();
 int index;

 if ((len % 2) != 0) {

 throw new SQLException(
 "Data must have an even number of hex
 digits");
 }

 b = new byte[len / 2];

 for (int i = 0; i < (len / 2); i++) {
 index = digits.indexOf(s.charAt(i * 2));

 if (index < 0) {
 throw new SQLException("Invalid hex digit");
 }

 b[i] = (byte) (index << 4);
 index = digits.indexOf(s.charAt((i * 2) + 1));

 if (index < 0) {
 throw new SQLException("Invalid hex digit");
 }
 b[i] += (byte) index;
 }
 }
 break;

 case Types.VARBINARY:
 b = (byte[]) data;
 break;

 default:
 throw new SQLException("Unable to convert data type to
 byte[]: " +
 internalType);
 }
 return b;
 }

 protected Object data;
 protected int internalType;
}

Note that the SimpleText driver supports only character, integer, and binary data; thus,
CommonValue only accepts these data types, and only attempts to convert data to these
same types. A more robust driver would need to further implement this class to include
more (if not all) data types.

Escape Clauses

Another consideration when implementing a JDBC driver is processing escape clauses.
Escape clauses are used as extensions to SQL and provide a method to perform DBMS-
specific extensions, which are interoperable among DBMSes. The JDBC driver must
accept escape clauses and expand them into the native DBMS format before processing
the SQL statement. While this sounds simple enough on the surface, this process may

turn out to be an enormous task. If you are developing a driver that uses an existing
DBMS, and the JDBC driver simply passes SQL statements to the DBMS, you may have
to develop a parser to scan for escape clauses.

The following types of SQL extensions are defined:

• Date, time, and timestamp data
• Scalar functions such as numeric, string, and data
type conversion
• LIKE predicate escape characters
• Outer joins
• Procedures

The JDBC specification does not directly address escape clauses; they are inherited from
the ODBC specification. The syntax defined by ODBC uses the escape clause provided
by the X/OPEN and SQL Access Group SQL CAE specification (1992). The general
syntax for an escape clause is:
{escape}

We’ll cover the specific syntax for each type of escape clause in the following sections.

Date, Time, And Timestamp

The date, time, and timestamp escape clauses allow an application to specify date, time,
and timestamp data in a uniform manner, without concern to the native DBMS format
(for which the JDBC driver is responsible). The syntax for each (respectively) is
{d 'value'}
{t 'value'}
{ts 'value'}

where d indicates value is a date in the format yyyy-mm-dd, t indicates value is a time in
the format hh:mm:ss, and ts indicates value is a timestamp in the format yyyy-mm-dd
hh:mm:ss[.f...]. The following SQL statements illustrate the use of each:
UPDATE EMPLOYEE SET HIREDATE={d '1992-04-01'}
UPDATE EMPLOYEE SET LAST_IN={ts '1996-07-03 08:00:00'}
UPDATE EMPLOYEE SET BREAK_DUE={t '10:00:00'}

Scalar Functions

The five types of scalar functions—string, numeric, time and date, system, and data type
conversion—all use the syntax:
{fn scalar-function}

To determine what type of string functions a JDBC driver supports, an application can
use the DatabaseMetaData method getStringFunctions. This method returns a comma-
separated list of string functions, possibly containing ASCII, CHAR, CONCAT,
DIFFERENCE, INSERT, LCASE, LEFT, LENGTH, LOCATE, LTRIM, REPEAT,
REPLACE, RIGHT, RTRIM, SOUNDEX, SPACE, SUBSTRING, and/or UCASE.

To determine what type of numeric functions a JDBC driver supports, an application can
use the DatabaseMetaData method getNumericFunctions. This method returns a

comma-separated list of numeric functions, possibly containing ABS, ACOS, ASIN,
ATAN, ATAN2, CEILING, COS, COT, DEGREES, EXP, FLOOR, LOG, LOG10,
MOD, PI, POWER, RADIANS, RAND, ROUND, SIGN, SIN, SQRT, TAN, and/or
TRUNCATE.

To determine what type of system functions a JDBC driver supports, an application can
use the DatabaseMetaData method getSystemFunctions. This method returns a
comma-separated list of system functions, possibly containing DATABASE, IFNULL,
and/or USER.

To determine what type of time and date functions a JDBC driver supports, an
application can use the DatabaseMetaData method getTimeDateFunctions. This
method returns a comma-separated list of time and date functions, possibly containing
CURDATE, CURTIME, DAYNAME, DAYOFMONTH, DAYOFWEEK,
DAYOFYEAR, HOUR, MINUTE, MONTH, MONTHNAME, NOW, QUARTER,
SECOND, TIMESTAMPADD, TIMESTAMPDIFF, WEEK, and/or YEAR.

To determine what type of explicit data type conversions a JDBC driver supports, an
application can use the DatabaseMetaData method supportsConvert. This method has
two parameters: a from SQL data type and a to SQL data type. If the explicit data
conversion between the two SQL types is supported, the method returns true. The syntax
for the CONVERT function is
{fn CONVERT(value, data_type)}

where value is a column name, the result of another scalar function, or a literal, and
data_type is one of the JDBC SQL types listed in the Types class.

LIKE Predicate Escape Characters

In a LIKE predicate, the “%” (percent character) matches zero or more of any character,
and the “_” (underscore character) matches any one character. In some instances, an SQL
query may have the need to search for one of these special matching characters. In such
cases, you can use the “%” and “_” characters as literals in a LIKE predicate by
preceding them with an escape character. The DatabaseMetaData method getSearch-
StringEscape returns the default escape character (which for most DBMSes will be the
backslash character “ \”). To override the escape character, use the following syntax:
{escape 'escape-character'}

The following SQL statement uses the LIKE predicate escape clause to search for any
columns that start with the “%” character:
SELECT * FROM EMPLOYEE WHERE NAME LIKE '\%' {escape '\'}

Outer Joins

JDBC supports the ANSI SQL-92 LEFT OUTER JOIN syntax. The escape clause syntax
is
{oj outer-join}

where outer-join is the table-reference LEFT OUTER JOIN {table-reference | outer-join}
ON search-condition.

Procedures

{[?=] call procedure-name[(param[, param]...)]}

where procedure-name specifies the name of a procedure stored on the data source, and
param specifies procedure parameters. A procedure can have zero or more parameters,
and may return a value.

Now let’s take a look at each of the JDBC interfaces, which are shown in Figure 10.2.
We’ll go over the major aspects of each interface and use code examples from our
SimpleText project whenever applicable. You should understand the JDBC API
specification before attempting to create a JDBC driver; this section is meant to enhance
the specification, not to replace it.

Figure 10.2 The JDBC interfaces.

The Driver class is the entry point for all JDBC drivers. From here, a connection to the
database can be made in order to perform work. This class is intentionally very small; the
intent is that JDBC drivers can be pre-registered with the system, enabling the
DriverManager to select an appropriate driver given only a URL (Universal Resource
Locator). The only way to determine which driver can service the given URL is to load
the Driver class and let each driver respond via the acceptsURL method. To keep the
amount of time required to find an appropriate driver to a minimum, each Driver class
should be as small as possible so it can be loaded quickly.

Register Thyself

java.sql.Driver d = (java.sql.Driver)
 Class.forName
("jdbc.SimpleText.SimpleTextDriver").newInstance();

Connection con = DriverManager.getConnection("jdbc:SimpleText", "", "");

A JDBC application can call a procedure in place of an SQL statement. The escape clause
used for calling a procedure is

The JDBC Interfaces

Driver

The very first thing that a driver should do is register itself with the DriverManager. The
reason is simple: You need to tell the DriverManager that you exist; otherwise you may
not be loaded. The following code illustrates one way of loading a JDBC driver:

The class loader will create a new instance of the SimpleText JDBC driver. The
application then asks the DriverManager to create a connection using the given URL. If
the SimpleText driver does not register itself, the DriverManager will not attempt to
load it, which will result in a nasty “No capable driver” error.

The best place to register a driver is in the Driver constructor:
public SimpleTextDriver()
 throws SQLException
{

 // Attempt to register this driver with the JDBC DriverManager.
 // If it fails, an exception will be thrown.
 DriverManager.registerDriver(this);

}

URL Processing

As I mentioned a moment ago, the acceptsURL method informs the DriverManager
whether a given URL is supported by the driver. The general format for a JDBC URL is
jdbc:subprotocol:subname

where subprotocol is the particular database connectivity mechanism supported (note that
this mechanism may be supported by multiple drivers) and the subname is defined by the
JDBC driver. For example, the format for the JDBC-ODBC Bridge URL is:
jdbc:odbc:data source name

Thus, if an application requests a JDBC driver to service the URL of
jdbc:odbc:foobar

the only driver that will respond that the URL is supported is the JDBC-ODBC Bridge;
all others will ignore the request.

Listing 10.14 shows the acceptsURL method for the SimpleText driver. The SimpleText
driver will accept the following URL syntax:
jdbc:SimpleText

Note that no subname is required; if a subname is provided, it will be ignored.

Listing 10.14 The acceptsURL method.
//--
--
// acceptsURL - JDBC API
//
// Returns true if the driver thinks that it can open a connection
// to the given URL. Typically, drivers will return true if they
// understand the subprotocol specified in the URL, and false if
// they don't.
//
// url The URL of the database.
//
// Returns true if this driver can connect to the given URL.

//--
--
public boolean acceptsURL(
 String url)
 throws SQLException
{
 if (traceOn()) {
 trace("@acceptsURL (url=" + url + ")");
 }

 boolean rc = false;
 // Get the subname from the url. If the url is not valid for
 // this driver, a null will be returned.

 if (getSubname(url) != null) {
 rc = true;
 }
 if (traceOn()) {
 trace(" " + rc);
 }
 return rc;
}

//--
--
// getSubname
// Given a URL, return the subname. Returns null if the protocol is
// not "jdbc" or the subprotocol is not "simpletext."
//--
--
public String getSubname(
 String url)
{
 String subname = null;
 String protocol = "JDBC";
 String subProtocol = "SIMPLETEXT";

 // Convert to uppercase and trim all leading and trailing
 // blanks.
 url = (url.toUpperCase()).trim();

 // Make sure the protocol is jdbc:
 if (url.startsWith(protocol)) {

 // Strip off the protocol
 url = url.substring (protocol.length());

 // Look for the colon
 if (url.startsWith(":")) {
 url = url.substring(1);

 // Check the subprotocol
 if (url.startsWith(subProtocol)) {

 // Strip off the subprotocol, leaving the subname
 url = url.substring(subProtocol.length());

 // Look for the colon that separates the subname
 // from the subprotocol (or the fact that there
 // is no subprotocol at all).
 if (url.startsWith(":")) {
 subname = url.substring(subProtocol.length());
 }
 else if (url.length() == 0) {
 subname = "";
 }
 }
 }
 }
 return subname;
}

Driver Properties

Connecting to a JDBC driver with only a URL specification is great, but the vast majority
of the time, a driver will require additional information in order to properly connect to a
database. The JDBC specification has addressed this issue with the getPropertyInfo
method. Once a Driver has been instantiated, an application can use this method to find
out what required and optional properties can be used to connect to the database. You
may be tempted to require the application to embed properties within the URL subname,
but by returning them from the getPropertyInfo method, you can identify the properties
at runtime, giving a much more robust solution. Listing 10.15 shows an application that
loads the SimpleText driver and gets the property information.

Listing 10.15 Using the getPropertyInfo method to identify properties at runtime.
import java.sql.*;

class PropertyTest {

 public static void main(String args[])
 {
 try {

 // Quick way to create a driver object
 java.sql.Driver d = new
jdbc.SimpleText.SimpleTextDriver();

 String url = "jdbc:SimpleText";
 // Make sure we have the proper URL
 if (!d.acceptsURL(url)) {
 throw new SQLException("Unknown URL: " + url);
 }

 // Setup a Properties object. This should contain an entry
 // for all known properties to this point. Properties that
 // have already been specified in the Properties object
will
 // not be returned by getPropertyInfo.
 java.util.Properties props = new java.util.Properties();

 // Get the property information
 DriverPropertyInfo info[] = d.getPropertyInfo(url, props);

 // Just dump them out
 System.out.println("Number of properties: " +
info.length);

 for (int i=0; i < info.length; i++) {
 System.out.println("\nProperty " + (i + 1));
 System.out.println("Name: " + info[i].name);
 System.out.println("Description: " +
 info[i].description);
 System.out.println("Required: " +
info[i].required);
 System.out.println("Value: " + info[i].value);
 System.out.println("Choices: " + info[i].choices);
 }

 }
 catch (SQLException ex) {
 System.out.println ("\nSQLException(s) caught\n");

 // Remember that SQLExceptions may be chained together
 while (ex != null) {
 System.out.println("SQLState: " +
ex.getSQLState());
 System.out.println("Message: " + ex.getMessage());
 System.out.println ("");
 ex = ex.getNextException ();
 }
 }
 }
}

Listing 10.15 produces the following output:
Number of properties: 1

Property 1
Name: Directory
Description: Initial text file directory
Required: false
Value: null
Choices: null

It doesn’t take a lot of imagination to envision an application or applet that gathers the
property information and prompts the user in order to connect to the database. The actual
code to implement the getPropertyInfo method for the SimpleText driver is very simple,
as shown in Listing 10.16.

Listing 10.16 Implementing the getPropertyInfo method.
//--
--
// getPropertyInfo - JDBC API
//
// The getPropertyInfo method is intended to allow a generic GUI tool to

// discover what properties it should prompt a human for in order to get
// enough information to connect to a database. Note that depending on
// the values the human has supplied so far, additional values may
become
// necessary, so it may be necessary to iterate though several calls.
// to getPropertyInfo.
//
// url The URL of the database to connect to.
//
// info A proposed list of tag/value pairs that will be sent on
// connect open.
//
// Returns an array of DriverPropertyInfo objects describing possible
// properties. This array may be an empty array if no
// properties are required.
//--
--

public DriverPropertyInfo[] getPropertyInfo(
 String url,
 java.util.Properties info)
 throws SQLException
{
 DriverPropertyInfo prop[];
 // Only one property required for the SimpleText driver, the
 // directory. Check the property list coming in. If the
 // directory is specified, return an empty list.
 if (info.getProperty("Directory") == null) {

 // Setup the DriverPropertyInfo entry
 prop = new DriverPropertyInfo[1];
 prop[0] = new DriverPropertyInfo("Directory", null);
 prop[0].description = "Initial text file directory";
 prop[0].required = false;

 }
 else {
 // Create an empty list
 prop = new DriverPropertyInfo[0];
 }

 return prop;

}

Let’s Get Connected

Now that we can identify a driver to provide services for a given URL and get a list of the
required and optional parameters necessary, it’s time to establish a connection to the
database. The connect method does just that, as shown in Listing 10.17, by taking a URL
and connection property list and attempting to make a connection to the database. The
first thing that connect should do is verify the URL (by making a call to acceptsURL). If
the URL is not supported by the driver, a null value will be returned. This is the only
reason that a null value should be returned. Any other errors during the connect should
throw an SQLException.

Listing 10.17 Connecting to the database.
//--
--
// connect - JDBC API
//
// Try to make a database connection to the given URL.
// The driver should return "null" if it realizes it is the wrong kind
// of driver to connect to the given URL. This will be common, as when
// the JDBC driver manager is asked to connect to a given URL, it passes
// the URL to each loaded driver in turn.
//
// The driver should raise an SQLException if it is the right
// driver to connect to the given URL, but has trouble connecting to
// the database.
//
// The java.util.Properties argument can be used to pass arbitrary
// string tag/value pairs as connection arguments.
// Normally, at least "user" and "password" properties should be
// included in the Properties.
//
// url The URL of the database to connect to.
//
// info a list of arbitrary string tag/value pairs as
// connection arguments; normally, at least a "user" and
// "password" property should be included.
//
// Returns a Connection to the URL.
//--
--
public Connection connect(
 String url,
 java.util.Properties info)
 throws SQLException
{
 if (traceOn()) {
 trace("@connect (url=" + url + ")");
 }

 // Ensure that we can understand the given URL
 if (!acceptsURL(url)) {
 return null;
 }

 // For typical JDBC drivers, it would be appropriate to check
 // for a secure environment before connecting, and deny access
 // to the driver if it is deemed to be unsecure. For the
 // SimpleText driver, if the environment is not secure, we will
 // turn it into a read-only driver.

 // Create a new SimpleTextConnection object
 SimpleTextConnection con = new SimpleTextConnection();

 // Initialize the new object. This is where all of the
 // connection work is done.
 con.initialize(this, info);

 return con;
}

As you can see, there isn’t a lot going on here for the SimpleText driver; remember that
we need to keep the size of the Driver class implementation as small as possible. To aid
in this, all of the code required to perform the database connection resides in the
Connection class, which we’ll discuss next.

Connection

The Connection class represents a session with the data source. From here, you can
create Statement objects to execute SQL statements and gather database statistics.
Depending upon the database that you are using, multiple connections may be allowed
for each driver.

For the SimpleText driver, we don’t need to do anything more than actually connect to
the database. In fact, there really isn’t a database at all—just a bunch of text files. For
typical database drivers, some type of connection context will be established, and default
information will be set and gathered. During the SimpleText connection initialization, all
that we need to do is check for a read-only condition (which can only occur within
untrusted applets) and any properties that are supplied by the application, as shown in
Listing 10.18.

Listing 10.18 SimpleText connection initialization.
public void initialize(
 Driver driver,
 java.util.Properties info)
 throws SQLException
{
 // Save the owning driver object
 ownerDriver = driver;

 // Get the security manager and see if we can write to a file.
 // If no security manager is present, assume that we are a trusted
 // application and have read/write privileges.
 canWrite = false;

 SecurityManager securityManager = System.getSecurityManager ();

 if (securityManager != null) {
 try {
 // Use some arbitrary file to check for file write
privileges
 securityManager.checkWrite ("SimpleText_Foo");
 // Flag is set if no exception is thrown
 canWrite = true;
 }

 // If we can't write, an exception is thrown. We'll catch
 // it and do nothing.
 catch (SecurityException ex) {

 }
 }
 else {
 canWrite = true;
 }

 // Set our initial read-only flag
 setReadOnly(!canWrite);

 // Get the directory. It will either be supplied in the property
 // list, or we'll use our current default.
 String s = info.getProperty("Directory");

 if (s == null) {
 s = System.getProperty("user.dir");
 }

 setCatalog(s);

}

Creating Statements

From the Connection object, an application can create three types of Statement objects.
The base Statement object is used for executing SQL statements directly. The
PreparedStatement object (which extends Statement) is used for pre-compiling SQL
statements that may contain input parameters. The CallableStatement object (which
extends PreparedStatement) is used to execute stored procedures that may contain both
input and output parameters.

For the SimpleText driver, the createStatement method does nothing more than create a
new Statement object. For most database systems, some type of statement context, or
handle, will be created. One thing to note whenever an object is created in a JDBC driver:
Save a reference to the owning object because you will need to obtain information (such
as the connection context from within a Statement object) from the owning object.

Consider the createStatement method within the Connection class:
public Statement createStatement()
 throws SQLException
{
 if (traceOn()) {
 trace("Creating new SimpleTextStatement");

 }

 // Create a new Statement object
 SimpleTextStatement stmt = new SimpleTextStatement();

 // Initialize the statement
 stmt.initialize(this);

 return stmt;

}

Now consider the corresponding initialize method in the Statement class:
public void initialize(
 SimpleTextConnection con)
 throws SQLException
{
 // Save the owning connection object
 ownerConnection = con;
}

Which module will you compile first? You can’t compile the Connection class until the
Statement class has been compiled, and you can’t compile the Statement class until the
Connection class has been compiled. This is a circular dependency. Of course, the Java
compiler does allow multiple files to be compiled at once, but some build environments
do not support circular dependency. I have solved this problem in the SimpleText driver
by defining some simple interface classes. In this way, the Statement class knows only
about the general interface of the Connection class; the implementation of the interface
does not need to be present. Our modified initialize method looks like this:
public void initialize(
 SimpleTextIConnection con)
 throws SQLException
{
 // Save the owning connection object
 ownerConnection = con;
}

Note that the only difference is the introduction of a new class, SimpleTextIConnection,
which replaces SimpleTextConnection. I have chosen to preface the JDBC class name
with an “I” to signify an interface. Here’s the interface class:
public interface SimpleTextIConnection
 extends java.sql.Connection
{
 String[] parseSQL(String sql);
 Hashtable getTables(String directory, String table);
 Hashtable getColumns(String directory, String table);
 String getDirectory(String directory);
}

Note that our interface class extends the JDBC class, and our Connection class
implements this new interface. This allows us to compile the interface first, then the
Statement, followed by the Connection. Say good-bye to your circular dependency
woes.

Now, back to the Statement objects. The prepareStatement and prepareCall methods
of the Connection object both require an SQL statement to be provided. This SQL
statement should be pre-compiled and stored with the Statement object. If any errors are
present in the SQL statement, an exception should be raised, and the Statement object
should not be created.

Tell Me About Yourself

One of the most powerful aspects of the JDBC specification (which was inherited from
X/Open) is the ability for introspection. This is the process of asking a driver for

information about what is supported, how it behaves, and what type of information exists
in the database. The getMetaData method creates a DatabaseMetaData object which
provides us with this wealth of information.

DatabaseMetaData

At over 130 methods, the DatabaseMetaData class is by far the largest. It supplies
information about what is supported and how things are supported. It also supplies
catalog information such as listing tables, columns, indexes, procedures, and so on.
Because the JDBC API specification does an adequate job of explaining the methods
contained in this class, and most of them are quite straightforward, we’ll just take a look
at how the SimpleText driver implements the getTables catalog method. But first, let’s
review the basic steps needed to implement each of the catalog methods (that is, those
methods that return a ResultSet):

1. Create the result columns, which includes the
column name, type, and other information about each
of the columns. You should perform this step regardless
of whether the database supports a given catalog
function (such as stored procedures). I believe that it is
much better to return an empty result set with only the
column information than to raise an exception
indicating that the database does not support the
function. The JDBC specification does not currently
address this issue, so it is open for interpretation.
2. Retrieve the catalog information from the database.
3. Perform any filtering necessary. The application
may have specified the return of only a subset of the
catalog information. You may need to filter the
information in the JDBC driver if the database system
doesn’t.
4. Sort the result data per the JDBC API specification.
If you are lucky, the database you are using will sort
the data in the proper sequence. Most likely, it will not.
In this case, you will need to ensure that the data is
returned in the proper order.
5. Return a ResultSet containing the requested
information.

The SimpleText getTables method will return a list of all of the text files in the catalog
(directory) given. If no catalog is supplied, the default directory is used. Note that the
SimpleText driver does not perform all of the steps shown previously; it does not provide
any filtering, nor does it sort the data in the proper sequence. You are more than welcome
to add this functionality. In fact, I encourage it. One note about column information: I
prefer to use a Hashtable containing the column number as the key, and a class

containing all of the information about the column as the data value. So, for all
ResultSets that are generated, I create a Hashtable of column information that is then
used by the ResultSet object and the ResultSetMetaData object to describe each
column. Listing 10.19 shows the SimpleTextColumn class that is used to hold this
information for each column.

Listing 10.19 The SimpleTextColumn class.
package jdbc.SimpleText;

public class SimpleTextColumn
 extends Object
{
//--
--
 // Constructor
//--
--
 public SimpleTextColumn(
 String name,
 int type,
 int precision)
 {
 this.name = name;
 this.type = type;
 this.precision = precision;
 }

 public SimpleTextColumn(
 String name,
 int type)
 {
 this.name = name;
 this.type = type;
 this.precision = 0;
 }
 public SimpleTextColumn(
 String name)
 {
 this.name = name;
 this.type = 0;
 this.precision = 0;
 }

 public String name;
 public int type;
 public int precision;
 public boolean searchable;
 public int colNo;
 public int displaySize;
 public String typeName;
}

Note that I have used several constructors to set up various default information, and that
all of the attributes are public. To follow object-oriented design, I should have provided a

get and set method to encapsulate each attribute, but I chose to let each consumer of this
object access them directly. Listing 10.20 shows the code for the getTables method.

Listing 10.20 The getTables method.
//--
// getTables - JDBC API
// Get a description of tables available in a catalog
//
// Only table descriptions matching the catalog, schema, table
// name and type criteria are returned. They are ordered by
// TABLE_TYPE, TABLE_SCHEM, and TABLE_NAME.
//
// Each table description has the following columns:
//
// (1) TABLE_CAT String => table catalog (may be null)
// (2) TABLE_SCHEM String => table schema (may be null)
// (3) TABLE_NAME String => table name
// (4) TABLE_TYPE String => table type
// Typical types are "TABLE", "VIEW", "SYSTEM TABLE",
// "GLOBAL TEMPORARY", "LOCAL TEMPORARY", "ALIAS", "SYNONYM"
// (5) REMARKS String => explanatory comment on the table
//
// Note: Some databases may not return information for
// all tables.
//
// catalog a catalog name; "" retrieves those without a
// catalog.
// schemaPattern a schema name pattern; "" retrieves those
// without a schema.
// tableNamePattern a table name pattern.
// types a list of table types to include; null returns
all
// types.
//
// Returns a ResultSet. Each row is a table description.
//--
public ResultSet getTables(
 String catalog,
 String schemaPattern,
 String tableNamePattern,
 String types[])
 throws SQLException
{
 if (traceOn()) {
 trace("@getTables(" + catalog + ", " + schemaPattern +
 ", " + tableNamePattern + ")");
 }

 // Create a statement object
 SimpleTextStatement stmt =
 (SimpleTextStatement) ownerConnection.createStatement();

 // Create a Hashtable for all of the columns
 Hashtable columns = new Hashtable();

 add(columns, 1, "TABLE_CAT", Types.VARCHAR);

 add(columns, 2, "TABLE_SCHEM", Types.VARCHAR);
 add(columns, 3, "TABLE_NAME", Types.VARCHAR);
 add(columns, 4, "TABLE_TYPE", Types.VARCHAR);
 add(columns, 5, "REMARKS", Types.VARCHAR);

 // Create an empty Hashtable for the rows
 Hashtable rows = new Hashtable();

 // If any of the parameters will return an empty result set, do so
 boolean willBeEmpty = false;

 // If table types are specified, make sure that 'TABLE' is
 // included. If not, no rows will be returned.

 if (types != null) {
 willBeEmpty = true;
 for (int ii = 0; ii < types.length; ii++) {
 if (types[ii].equalsIgnoreCase("TABLE")) {
 willBeEmpty = false;
 break;
 }
 }
 }
 if (!willBeEmpty) {
 // Get a Hashtable with all tables
 Hashtable tables = ownerConnection.getTables(
 ownerConnection.getDirectory(catalog),
 tableNamePattern);

 Hashtable singleRow;
 SimpleTextTable table;

 // Create a row for each table in the Hashtable
 for (int i = 0; i < tables.size(); i++) {
 table = (SimpleTextTable) tables.get(new Integer(i));

 // Create a new Hashtable for a single row
 singleRow = new Hashtable();

 // Build the row
 singleRow.put(new Integer(1), new CommonValue(table.dir));
 singleRow.put(new Integer(3), new CommonValue(table.name));
 singleRow.put(new Integer(4), new CommonValue("TABLE"));

 // Add it to the row list
 rows.put(new Integer(i + 1), singleRow);
 }
 }

 // Create the ResultSet object and return it
 SimpleTextResultSet rs = new SimpleTextResultSet();

 rs.initialize(stmt, columns, rows);

 return rs;
}

Let’s take a closer look at what’s going on here. The first thing we do is create a
Statement object to “fake out” the ResultSet object that we will be creating to return
back to the application. The ResultSet object is dependent upon a Statement object, so
we’ll give it one. The next thing we do is create all of the column information. Note that
all of the required columns are given in the JDBC API specification. The add method
simply adds a SimpleTextColumn object to the Hashtable of columns:
protected void add(
 Hashtable h,
 int col,
 String name,
 int type)
{
 h.put(new Integer(col), new SimpleTextColumn(name,type));
}

Next, we create another Hashtable to hold all of the data for all of the catalog rows. The
Hashtable contains an entry for each row of data. The entry contains the key, which is
the row number, and the data value, which is yet another Hashtable whose key is the
column number and whose data value is a CommonValue object containing the actual
data. Remember that the CommonValue class provides us with the mechanism to store
data and coerce it as requested by the application. If a column is null, we simply cannot
store any information in the Hashtable for that column number.

After some sanity checking to ensure that we really need to look for the catalog
information, we get a list of all of the tables. The getTables method in the Connection
class provides us with a list of all of the SimpleText data files:
public Hashtable getTables(
 String dir,
 String table)
{
 Hashtable list = new Hashtable();

 // Create a FilenameFilter object. This object will only allow
 // files with the .SDF extension to be seen.
 FilenameFilter filter = new SimpleTextEndsWith(
 SimpleTextDefine.DATA_FILE_EXT);

 File file = new File(dir);

 if (file.isDirectory()) {

 // List all of the files in the directory with the .SDF
extension
 String entries[] = file.list(filter);
 SimpleTextTable tableEntry;

 // Create a SimpleTextTable entry for each, and put in
 // the Hashtable.
 for (int i = 0; i < entries.length; i++) {

 // A complete driver needs to further filter the table

 // name here.
 tableEntry = new SimpleTextTable(dir, entries[i]);
 list.put(new Integer(i), tableEntry);

 }
 }

 return list;
}

Again, I use a Hashtable for each table (or file in our case) that is found. By now, you
will have realized that I really like using Hashtables; they can grow in size dynamically
and provide quick access to data. And because a Hashtable stores data as an abstract
Object, I can store whatever is necessary. In this case, each Hashtable entry for a table
contains a SimpleTextTable object:
public class SimpleTextTable
 extends Object
{
//--
--
 // Constructor
//--
--
 public SimpleTextTable(
 String dir,
 String file)
 {
 this.dir = dir;
 this.file = file;

 // If the filename has the .SDF extension, get rid of it
 if (file.endsWith(SimpleTextDefine.DATA_FILE_EXT)) {
 name = file.substring(0, file.length() -
 SimpleTextDefine.DATA_FILE_EXT.length());
 }
 else {
 name = file;
 }
 }

 public String dir;
 public String file;
 public String name;
}

Notice that the constructor strips the file extension from the given file name, creating the
table name.

Now, back to the getTables method for DatabaseMetaData. Once a list of all of the
tables has been retrieved, the Hashtable used for storing all of the rows is generated. If
you were to add additional filtering, this is the place that it should be done. Finally, a new
ResultSet object is created and initialized. One of the constructors for the ResultSet class
accepts two Hashtables: one for the column information (SimpleTextColumn objects),
and the other for row data (CommonValue objects). We’ll see later how these are

handled by the ResultSet class. For now, just note that it can handle both in-memory
results (in the form of a Hashtable) and results read directly from the data file.

Statement

The Statement class contains methods to execute SQL statements directly against the
database and to obtain the results. A Statement object is created using the
createStatement method from the Connection object. Of note in Listing 10.21 are the
three methods used to execute SQL statements: executeUpdate, executeQuery, and
execute. In actuality, you only need to worry about implementing the execute method;
the other methods use it to perform their work. In fact, the code provided in the
SimpleText driver should be identical for all JDBC drivers.

Listing 10.21 Executing SQL statements.
//--
--
// executeQuery - JDBC API
// Execute an SQL statement that returns a single ResultSet.
//
// sql Typically this is a static SQL SELECT statement.
//
// Returns the table of data produced by the SQL statement.
//--
--
public ResultSet executeQuery(
 String sql)
 throws SQLException
{
 if (traceOn()) {
 trace("@executeQuery(" + sql + ")");
 }

 java.sql.ResultSet rs = null;

 // Execute the query. If execute returns true, then a result set
 // exists.
 if (execute(sql)) {
 rs = getResultSet();
 }
 else { // If the statement does not create a ResultSet, the
 // specification indicates that an SQLException
should
 // be raised.
 throw new SQLException("Statement did not create a ResultSet");
 }
 return rs;
}

//--
--
// executeUpdate - JDBC API
// Execute an SQL INSERT, UPDATE, or DELETE statement. In addition,
// SQL statements that return nothing, such as SQL DDL statements,
// can be executed.

//
// sql an SQL INSERT, UPDATE, or DELETE statement, or an SQL
// statement that returns nothing.
//
// Returns either the row count for INSERT, UPDATE, or DELETE; or 0
// for SQL statements that return nothing.
//--
--
public int executeUpdate(
 String sql)
 throws SQLException
{
 if (traceOn()) {
 trace("@executeUpdate(" + sql + ")");
 }
 int count = -1;

 // Execute the query. If execute returns false, then an update
 // count exists.
 if (execute(sql) == false) {
 count = getUpdateCount();
 }
 else {
 // If the statement does not create an update count, the
 // specification indicates that an SQLException should be
raised.
 throw new SQLException("Statement did not create an update
 count");
 }

 return count;
}

As you can see, executeQuery and executeUpdate are simply helper methods for an
application; they are built completely upon other methods contained within the class. The
execute method accepts an SQL statement as its only parameter, and will be implemented
differently, depending upon the underlying database system. For the SimpleText driver,
the SQL statement will be parsed, prepared, and executed. Note that parameter markers
are not allowed when executing an SQL statement directly. If the SQL statement created
results containing columnar data, execute will return true; if the statement created a count
of rows affected, execute will return false. If execute returns true, the application then
uses getResultSet to return the current result information; otherwise, getUpdateCount
will return the number of rows affected.

Warnings

As opposed to SQLException, which indicates a critical error, an SQLWarning can be
issued to provide additional information to the application. Even though SQLWarning is
derived from SQLException, warnings are not thrown. Instead, if a warning is issued, it
is placed on a warning stack with the Statement object (the same holds true for the
Connection and ResultSet objects). The application must then check for warnings after
every operation using the getWarnings method. At first, this may seem a bit

cumbersome, but when you consider the alternative of wrapping try...catch statements
around each operation, this seems like a better solution. Note also that warnings can be
chained together, just like SQLExceptions (for more information on chaining, see the
JDBC Exception Types section earlier in this chapter).

Two (Or More) For The Price Of One

Some database systems allow SQL statements that return multiple results (columnar data
or an update count) to be executed. If you are unfortunate enough to be developing a
JDBC driver using one of these database systems, take heart. The JDBC specification
does address this issue. The getMoreResults method is intended to move through the
results. Figuring out when you have reached the end of the results, however, is a bit
convoluted. To do so, you first call getMoreResults. If it returns true, there is another
ResultSet present and you can use getResultSet to retrieve it. If getMoreResults returns
false, you have either reached the end of the results, or an update count exists; you must
call getUpdateCount to determine which situation exists. If getUpdateCount returns -1,
you have reached the end of the results; otherwise, it will return the number of rows
affected by the statement.

The SimpleText driver does not support multiple result sets, so I don’t have any example
code to present to you. The only DBMS that I am aware of that supports this is Sybase.
Because there are already multiple JDBC drivers available for Sybase (one of which I
have developed), I doubt you will have to be concerned with getMoreResults. Consider
yourself lucky.

PreparedStatement

The PreparedStatement is used for pre-compiling an SQL statement, typically in
conjunction with parameters, and can be efficiently executed multiple times with just a
change in a parameter value; the SQL statement does not have to be parsed and compiled
each time. Because the PreparedStatement class extends the Statement class, you will
have already implemented a majority of the methods. The executeQuery,
executeUpdate, and execute methods are very similar to the Statement methods of the
same name, but they do not take an SQL statement as a parameter. The SQL statement
for the PreparedStatement was provided when the object was created with the
prepareStatement method from the Connection object. One danger to note here:
Because PreparedStatement is derived from the Statement class, all of the methods in
Statement are also in PreparedStatement. The three execute methods from the
Statement class that accept SQL statements are not valid for the PreparedStatement
class. To prevent an application from invoking these methods, the driver should also
implement them in PreparedStatement, as shown here:
// The overloaded executeQuery on the Statement object (which we
// extend) is not valid for PreparedStatement or CallableStatement
// objects.
public ResultSet executeQuery(
 String sql)
 throws SQLException
{
 throw new SQLException("Method is not valid");

}

// The overloaded executeUpdate on the Statement object (which we
// extend) is not valid for PreparedStatement or CallableStatement
// objects.
public int executeUpdate(
 String sql)
 throws SQLException
{
 throw new SQLException("Method is not valid");
}

// The overloaded execute on the Statement object (which we
// extend) is not valid for PreparedStatement or CallableStatement
// objects.
public boolean execute(
 String sql)
 throws SQLException
{
 throw new SQLException("Method is not valid");
}

Setting Parameter Values

The PreparedStatement class introduces a series of “set” methods to set the value of a
specified parameter. Take the following SQL statement:
INSERT INTO FOO VALUES (?, ?, ?)

If this statement was used in creating a PreparedStatement object, you would need to
set the value of each parameter before executing it. In the SimpleText driver, parameter
values are kept in a Hashtable. The Hashtable contains the parameter number as the
key, and a CommonValue object as the data object. By using a CommonValue object,
the application can set the parameter using any one of the supported data types, and we
can coerce the data into the format that we need in order to bind the parameter. Here’s the
code for the setString method:
public void setString(
 int parameterIndex,
 String x)
 throws SQLException
{
 // Validate the parameter index
 verify(parameterIndex);

 // Put the parameter into the boundParams Hashtable
 boundParams.put(new Integer(parameterIndex), x);
}

The verify method validates that the given parameter index is valid for the current
prepared statement, and also clears any previously bound value for that parameter index:
protected void verify(
 int parameterIndex)
 throws SQLException
{

 clearWarnings();

 // The paramCount was set when the statement was prepared
 if ((parameterIndex <= 0) ||
 (parameterIndex > paramCount)) {
 throw new SQLException("Invalid parameter number: " +
 parameterIndex);
 }

 // If the parameter has already been set, clear it
 if (boundParams.get(new Integer(parameterIndex)) != null) {
 boundParams.remove(new Integer(parameterIndex));
 }
}

Because the CommonValue class does not yet support all of the JDBC data types, not all
of the set methods have been implemented in the SimpleText driver. You can see,
however, how easy it would be to fully implement these methods once CommonValue
supported all of the necessary data coercion.

What Is It?

Another way to set parameter values is by using the setObject method. This method can
easily be built upon the other set methods. Of interest here is the ability to set an Object
without giving the JDBC driver the type of driver being set. The SimpleText driver
implements a simple method to determine the type of object, given only the object itself:
protected int getObjectType(
 Object x)
 throws SQLException
{

 // Determine the data type of the Object by attempting to cast
 // the object. An exception will be thrown if an invalid casting
 // is attempted.
 try {
 if ((String) x != null) {
 return Types.VARCHAR;
 }
 }
 catch (Exception ex) {
 }

 try {
 if ((Integer) x != null) {
 return Types.INTEGER;
 }
 }
 catch (Exception ex) {
 }

 try {
 if ((byte[]) x != null) {
 return Types.VARBINARY;

 }
 }
 catch (Exception ex) {
 }

 throw new SQLException("Unknown object type");
}

Setting InputStreams

As we’ll see with ResultSet later, using InputStreams is the recommended way to work
with long data (blobs). There are two ways to treat InputStreams when using them as
input parameters: Read the entire InputStream when the parameter is set and treat it as a
large data object, or defer the read until the statement is executed and read it in chunks at
a time. The latter approach is the preferred method because the contents of an
InputStream may be too large to fit into memory. Here’s what the SimpleText driver
does with InputStreams:
public void setBinaryStream(
 int parameterIndex,
 java.io.InputStream x,
 int length)
 throws SQLException
{

 // Validate the parameter index
 verify(parameterIndex);

 // Read in the entire InputStream all at once. A more optimal
 // way of handling this would be to defer the read until execute
 // time, and only read in chunks at a time.
 byte b[] = new byte[length];

 try {
 x.read(b);
 }
 catch (Exception ex) {
 throw new SQLException("Unable to read InputStream: " +
 ex.getMessage());
 }

 // Set the data as a byte array
 setBytes(parameterIndex, b);
}

But wait, this isn’t the preferred way! You are correct, it isn’t. The SimpleText driver
simply reads in the entire InputStream and then sets the parameter as a byte array. I’ll
leave it up to you to modify the driver to defer the read until execute time.

ResultSet

The ResultSet class provides methods to access data generated by a table query. This
includes a series of get methods which retrieve data in any one of the JDBC SQL type
formats, either by column number or by column name. When the issue of providing get
methods was first introduced by JavaSoft, some disgruntled programmers argued that

they were not necessary; if an application wanted to get data in this manner, then the
application could provide a routine to cross reference the column name to a column
number. Unfortunately (in my opinion), JavaSoft chose to keep these methods in the API
and provide the implementation of the cross reference method in an appendix. Because it
is part of the API, all drivers must implement the methods. Implementing the methods is
not all that difficult, but it is tedious and adds overhead to the driver. The driver simply
takes the column name that is given, gets the corresponding column number for the
column name, and invokes the same get method using the column number:
public String getString(
 String columnName)
 throws SQLException
{
 return getString(findColumn(columnName));
}

And here’s the findColumn routine:
public int findColumn(
 String columnName)
 throws SQLException
{
 // Make a mapping cache if we don't already have one
 if (md == null) {
 md = getMetaData();
 s2c = new Hashtable();
 }
 // Look for the mapping in our cache
 Integer x = (Integer) s2c.get(columnName);

 if (x != null) {
 return (x.intValue());
 }

 // OK, we'll have to use metadata
 for (int i = 1; i < md.getColumnCount(); i++) {
 if (md.getColumnName(i).equalsIgnoreCase(columnName)) {

 // Success! Add an entry to the cache
 s2c.put(columnName, new Integer(i));
 return (i);
 }
 }

 throw new SQLException("Column name not found: " + columnName,
 "S0022");
}

This method uses a Hashtable to cache the column number and column names.

It’s Your Way, Right Away

An application can request column data in any one of the supported JDBC data types. As
we have discussed before, the driver should coerce the data into the proper format. The
SimpleText driver accomplishes this by using a CommonValue object for all data
values. Therefore, the data can be served in any format, stored as a CommonValue

object, and the application can request it in any other supported format. Let’s take a look
at the getString method:
public String getString(
 int columnIndex)
 throws SQLException
{
 // Verify the column and get the absolute column number for the
 // table.
 int colNo = verify(columnIndex);

 String s = null;

 if (inMemoryRows != null) {
 s = (getColumn(rowNum, columnIndex)).getString();
 }
 else {
 CommonValue value = getValue(colNo);

 if (value != null) {
 s = value.getString();
 }
 }
 if (s == null) {
 lastNull = true;
 }

 return s;
}

The method starts out by verifying that the given column number is valid. If it is not, an
exception is thrown. Some other types of initialization are also performed. Remember
that all ResultSet objects are provided with a Hashtable of SimpleTextColumn objects
describing each column:
protected int verify(
 int column)
 throws SQLException
{
 clearWarnings();
 lastNull = false;

 SimpleTextColumn col = (SimpleTextColumn) inMemoryColumns.get(
 new Integer(column));

 if (col == null) {
 throw new SQLException("Invalid column number: " + column);
 }
 return col.colNo;
}

Next, if the row data is stored in an in-memory Hashtable (as with the
DatabaseMetaData catalog methods), the data is retrieved from the Hashtable.
Otherwise, the driver gets the data from the data file. In both instances, the data is
retrieved as a CommonValue object, and the getString method is used to format the data

into the requested data type. Null values are handled specially; the JDBC API has a
wasNull method that will return true if the last column that was retrieved was null:
public boolean wasNull()
 throws SQLException
{
 return lastNull;
}

The SimpleText driver also supports InputStreams. In our case, the
SimpleTextInputStream class is just a simple wrapper around a CommonValue object.
Thus, if an application requests the data for a column as an InputStream, the SimpleText
driver will get the data as a CommonValue object (as it always does) and create an
InputStream that fetches the data from the CommonValue.

The getMetaData method returns a ResultSetMetaData object, which is our last class to
cover.

ResultSetMetaData

The ResultSetMetaData class provides methods that describe each one of the columns in
a result set. This includes the column count, column attributes, and the column name.
ResultSetMetaData will typically be the smallest class in a JDBC driver, and is usually
very straightforward to implement. For the SimpleText driver, all of the necessary
information is retrieved from the Hashtable of column information that is required for all
result sets. Thus, to retrieve the column name:
public String getColumnLabel(
 int column)
 throws SQLException
{
 // Use the column name
 return getColumnName(column);
}

protected SimpleTextColumn getColumn(
 int col)
 throws SQLException
{
 SimpleTextColumn column = (SimpleTextColumn)
 inMemoryColumns.get(new Integer(col));

 if (column == null) {
 throw new SQLException("Invalid column number: " + col);
 }

 return column;
}

Summary

We have covered a lot of material in this chapter, including the JDBC DriverManager
and the services that it provides, implementing Java interfaces, creating native JDBC
drivers, tracing, data coercion, escape sequence processing, and each one of the major

JDBC interfaces. This information, in conjunction with the SimpleText driver, should
help you to create your own JDBC driver without too much difficulty.

Chapter 11
Internet Database Issues: Middleware
The JDBC specification says that the JDBC API should serve as a platform for building
so-called “three-tier” client/server systems, often called middleware. As you might
imagine, these systems have three basic components: the client, the server, and the
application server. Figure 11.1 shows the basic structure of a three-tier system.

Figure 11.1 Three-tier system structure.

In this chapter, I’ll provide you with the code necessary to implement a simple
application server of your own. We’ll also take a look at building a client for our home-
grown application server. But before we get to the coding, we first need to discuss why
we would want to go to such lengths to build a three-tier system instead of allowing
direct database access.

Several middleware solutions based on the JDBC are already available, and although you
may ultimately decide to buy one from a vendor instead of coding one yourself, I feel that
it’s important to learn the issues involved with middleware. Knowing the advantages and
disadvantages that go along with inserting a middle tier to a system can help you decide if
you need one.

Connectivity Issues Involved With Database Access

Let’s begin by examining some issues of database scalabilty that you are likely to
encounter. The Internet and large intranet scenarios pose interesting dilemmas for
databases that serve a large number of users:

• Concurrency—Suppose a user receives some data
from the database server, and while the user is looking
at it, the data on the database server is changed in
some way. For the user to see the updated material,
both the database server and the client need to be able
to handle the change. While some database servers can
handle the necessary coding (and the increased load on
the server) for updating, some cannot.

• Legacy Databases—Some legacy database systems
may not support simultaneous connections, or even
direct connections using TCP/IP.
• Security—Most database servers do not support
encrypted connections, which means that certain
transactions, such as the login using a password, will
not be secure. Over the Internet, such a lack of
security is a major hole.
• Simultaneous Connections—Database servers have
a limit on the number of active connections.
Unfortunately, exceeding this predefined limit on the
Internet is easy.

Advantages Of Middleware

Let’s now have a look at how a middle tier can address the issues presented in the
previous section, while adding extra capability to a client/server system:

• Concurrency—You can program the application
server to handle concurrency issues, off-loading the
task from the database server. Of course, you would
also need to program the clients to respond to update
broadcasts. You can implement concurrency checking
entirely on the application server, if necessary. This
process involves checking to see if a specific data
object requested by a client has changed since the
current request, asking the client to update the
previously retrieved data, and alerting the user.
• Legacy Databases—Databases that operate on
older network protocols can be piped through an
application server running on a machine that can
communicate with the database server, as well as with
remote Internet clients. A JDBC driver that can speak
to a non-networked legacy database can be used to
provide Internet access to its data, even using an ODBC
driver, courtesy of the JDBC-ODBC Bridge. The
application server can reside on the same machine as
the non-networked database, and provide network
access using a client that communicates to the
application server.
• Security—You can program/obtain an application
server that supports a secure connection to the remote
clients. If you keep the local connection between the
database server and the application server restricted to
each other, you can create a fairly secure system. In
this type of setup, your database server can only talk

to the application server, so the threat of someone
connecting directly to the database server and causing
damage is greatly limited. However, you must be sure
that there are no loopholes in your application server.
• Simultaneous Connections—The application
server, in theory, can maintain only one active
connection to the database server. On the other side, it
can allow as many connections to itself from clients as
it wants. In practice, however, significant speed
problems will arise as more users attempt to use one
connection. Managing a number of fixed connections to
the database server is possible, though, so this speed
degradation is not noticeable.

Disadvantages Of Middleware

Of course, middleware is not without its own pitfalls. Let’s take a brief look at some
disadvantages you may encounter if you choose to implement an application server:

• Speed—As I’ve hinted, speed is the main drawback
to running an application server, especially if the
application server is running on a slow machine. If the
application server does not run on the same machine as
the database server, there may be additional speed loss
as the two communicate with each other.
• Security—If your application server is not properly
secured, additional security holes could easily crop up.
For example, a rogue user could break into the
application server, then break into the database server
using the application server’s functions. Again, you
must take great care to make sure that unauthorized
access to the database server via the application server
is not possible.
• Reliability—Adding an application server to the
system introduces potential problems that may not be
present in a two-tier system, where the clients are
communicating directly with the database server.

The Application Server: A Complete Example With Code

I’ve shown you the advantages and disadvantages of implementing an application server;
it’s up to you to weigh these points and other relating factors when it comes time to make
a decision on your own system. Let’s look at a fully functional application server. The
application server shown in Listing 11.1 uses JDBC to interact with data sources, so any
JDBC driver could be used. I used the mSQL driver in this example, but you can easily
modify the code to use the JDBC-ODBC Bridge, and then use the ODBC drivers for
Access 95 to allow applets to query an Access 95 database. (This is an interesting

scenario, because Access does not provide direct network connectivity in the form of a
true “database server.”) This application server is truly multithreaded—it spawns each
client connection into its own thread. Each client connection also make a new instance of
the JDBC driver, so each client has its own virtual connection to the data source via the
application server.

The application server only allows two real functions:

• Connect to a predefined data source
• Make Select queries against the data source

The query is processed against the data source, and the result is piped directly back to the
client in pre-formatted text. You can easily extend this approach so that a ResultSet can
be encapsulated and sent unprocessed to the client by using the upcoming remote objects
specification from JavaSoft. For the purposes of this example, I won’t make it too
elaborate and instead just send over the results in a delimited String format. The client is
not a true JDBC client in that it does not implement a JDBC driver; it uses the two
functions defined earlier to make queries. The results can be parsed by the applet calling
the client, but for the purpose of this simple example, we’ll just show them to the user
(you’ll see this when we show the code for the client).

You can find the source file for Listing 11.1 on the CD-ROM or on The Coriolis Group’s
Web site at http://www.coriolis.com/jdbc-book. Figure 11.2 shows the application
server’s window.

Figure 11.2 The application server console.

Listing 11.1 Application server.
import java.awt.List;
import java.awt.Frame;
import java.net.*;
import java.io.*;
import java.util.*;
import java.sql.*;
// Remember that we are using the JDBC driver on the _server_ to connect
// to a data source, so we need the JDBC API classes!

public class ApplicationServer extends Thread {
 public final static int DEFAULT_PORT = 6001;
 protected int port;
 protected ServerSocket server_port;
 protected ThreadGroup CurrentConnections;
 protected List connection_list;
 protected Vector connections;
 protected ConnectionWatcher watcher;
 public Frame f;
 // We plan on showing the connections to the server, so we need a
frame

 // Exit with an error message if there's an exception

http://www.coriolis.com/jdbc-book

 public static void fail(Exception e, String msg) {
 System.err.println(msg + ": " + e);
 System.exit(1);
 }

 // Create a ServerSocket to listen for connections and start its
thread.
 public ApplicationServer(int port) {
 // Create our server thread with a name
 super("Server");
 if (port == 0) port = DEFAULT_PORT;
 this.port = port;
 try { server_port = new ServerSocket(port); }
 catch (IOException e) {fail(e, "Exception creating server socket");}
 // Create a threadgroup for our connections
 CurrentConnections = new ThreadGroup("Server Connections");

 // Create a window to display our connections in
 f = new Frame("Server Status");
 connection_list = new List();
 f.add("Center", connection_list);
 f.resize(400, 200);
 f.show();

 // Initialize a vector to store our connections in
 connections = new Vector();
 // Create a ConnectionWatcher thread to wait for other threads to
die
 // and to perform clean-up.
 watcher = new ConnectionWatcher(this);
 // Start the server listening for connections
 this.start();
 }

 public void run() {
 // this is where new connections are listened for
 try {
 while(true) {
 Socket client_socket = server_port.accept();
 ServerConnection c = new ServerConnection(client_socket,
 CurrentConnections, 3, watcher);
 // Prevent simultaneous access
 synchronized (connections) {
 connections.addElement(c);
 connection_list.addItem(c.getInfo());
 }
 }
 }
 catch (IOException e) {fail(e, "Exception while listening for
 connections");}
 f.dispose();
 System.exit(0);
 }

 // Start the server up, get a port number if specified
 public static void main(String[] args) {
 int port = 0;

 if (args.length == 1) {
 try {port = Integer.parseInt(args[0]);}
 catch (NumberFormatException e) {port = 0;}
 }
 new ApplicationServer(port);
 }
}

// This class is the thread that handles all communication with a
client.
// It also notifies the ConnectionWatcher when the connection is
dropped.
class ServerConnection extends Thread {
 static int numberOfConnections = 0;
 protected Socket client;
 protected ConnectionWatcher watcher;
 protected DataInputStream in;
 protected PrintStream out;
 Connection con;

 // Initialize the streams and start the thread
 public ServerConnection(Socket client_socket, ThreadGroup
 CurrentConnections,
 int priority, ConnectionWatcher watcher) {
 // Give the thread a group, a name, and a priority
 super(CurrentConnections, "Connection number" +
 numberOfConnections++);
 this.setPriority(priority);

 // We'll need this data later, so store it in local objects
 client = client_socket;
 this.watcher = watcher;

 // Create the streams for talking with client
 try {
 in = new DataInputStream(client.getInputStream());
 out = new PrintStream(client.getOutputStream());
 }
 catch (IOException e) {
 try {client.close();} catch (IOException e2) {
 System.err.println("Exception while getting socket streams:
"
 + e); return;}
 }
 // And start the thread up
 this.start();
 }

// This is where the real "functionality" of the server takes place.
// This is where the input and output is done to the client.
 public void run() {
 String inline;
 try {
 // Loop forever, or until the connection is broken!
 while(true) {
 // Read in a line
 inline = in.readLine();

 if (inline == null) break;
 // If the client has broken connection, get out of
 // the loop

 inline=inline.trim();
 // Get rid of leading and trailing whitespace

 // These are the two functions implemented, connect
 // and query. The client sends one of these commands,
 // and if it's query ("S") then the server expects
the
 // next line sent to be the query.
 switch(inline.toCharArray()[0]) {
 case `L': out.println("Connected to datasource");
 out.println("DONE");
 ConnectToDatasource("jdbc:msql://elanor:1112/bcancer",
 "prpatel");
 // See this method next... it starts up the driver and
 // connects to the data source.
 break;
 case `S': out.println("Run query: send SQL Query");
 out.println("DONE");
 inline = in.readLine();
 inline=inline.trim();

 default: out.println("ERROR - Invalid Request");

 // This line gets the query sent here, runs its against
 // the connected data source, and returns the results in
 // formatted text
 out.print(RunQuery(inline));
 // RunQuery is the method that runs the passed in
 // query using the initialized driver and connection.
 out.println("DONE");
 break;

 out.println("DONE");
 }

 out.flush();
 }
 }
 catch (IOException e) {}

 // If the client broke off the connection, notify the
 // ConnectionWatcher
 // (watcher) which will close the connection.
 finally {
 try {client.close();}
 catch (IOException e2) {
 synchronized (watcher) {watcher.notify();}
 } }
 }

// This sends info back to the connection starter so that it can
// be displayed in the frame.
 public String getInfo() {
 return ("Client connected from:"+client.getInetAddress().
 getHostName());
 }

 // DB specific stuff follows

 protected ConnectionWatcher(ApplicationServer s) {

private void ConnectToDatasource(String url, String Name) {
try {
 new imaginary.sql.iMsqlDriver();
 con = DriverManager.getConnection(url, Name, "");
// Create an instance of the driver and connect to the DB server
 }
 catch(Exception e) {
 e.printStackTrace(); System.out.println(e.getMessage());
 }
}

private String RunQuery(String QueryLine) {
// Run the passed in query and return the Stringified results
 String Output="";
 int columns;
 int pos;
 try {

 Statement stmt = con.createStatement();
 ResultSet rs = stmt.executeQuery(QueryLine);
 columns=(rs.getMetaData()).getColumnCount();

 while(rs.next()) {

 for(pos=1; pos<=columns; pos++) {

 Output+=rs.getObject(pos)+" ";
 }
 Output+="\n";

 }
 stmt.close();
 // con.close();
 }
 catch(Exception e) {
 e.printStackTrace();
 Output=e.getMessage();
 }
 return Output;
 }
 // End DB specific stuff

} // End class Connection

// This class cleans up closed connections and updates the displayed
// list of connected clients.
class ConnectionWatcher extends Thread {
 protected ApplicationServer server;

 super(s.CurrentConnections, "ConnectionWatcher");
 server = s;
 this.start();
 }

 public synchronized void run() {

 while(true) {
 try {this.wait(10000);}
 catch (InterruptedException e){
 System.out.println("Caught an Interrupted Exception");
 }
 // Prevent simultaneous access
 synchronized(server.connections) {
 // Loop through the connections
 for(int i = 0; i < server.connections.size(); i++) {
 ServerConnection c;
 c = (ServerConnection)server.connections.elementAt(i);
 // If the connection thread isn't alive anymore,
 // remove it from the Vector and List.
 if (!c.isAlive()) {
 server.connections.removeElementAt(i);
 server.connection_list.delItem(i);
 i--;
 }
 }
 }
 }
 }

The Client: A Complete Example With Code

Now that we have the server code, let’s look at the client class, which is shown in Listing
11.2. This client class is not self-standing; we’ll need an applet to call this class and make
use of the methods we define in it. The code for a sample applet that calls this client class
is shown in Listing 11.3. Note that the client is specially coded to communicate with the
application server in Listing 11.1, and that it does not require the Web browser it is run
on to have the JDBC API classes. For our simple example, we don’t need to implement
all of the functionality that is demanded of a JDBC driver, so I didn’t write one; a JDBC
driver that can talk to our application server would not be difficult to write at this point,
however, because we have a simple “command set” and simple functionality. Figure 11.3
shows the client applet in Listing 11.3, which uses the Dbclient class.

Figure 11.3 Sample applet that uses our client.

Listing 11.2 Client class.
import java.io.*;
import java.net.*;
import java.applet.*;

public class DBClient {
public Socket socket;
public PrintStream out;
public String Name;

public Reader reader;

public DBClient (String ServerName, int ServerPort) {
 try { socket = new Socket(ServerName, ServerPort);
 // We put the reading of the inputStream from the application
 // server in its own thread, Reader.
 reader = new Reader(this);
 out = new PrintStream(socket.getOutputStream());
 }
 catch (IOException e) {System.err.println(e);}
 }
public String ProcessCommand(String InLine) {
System.out.println("FROM DBCLIENT:"+InLine);
 out.println(InLine);

 out.flush();
// tell the reader we've sent some data/command
 synchronized(reader){reader.notify();reader.notifyOn=false;}
 while(true) {
 // We have to wait until the Reader has finished reading, so we
set
 // this notifyOn flag in the reader when it has finished reading.
 if (reader.notifyOn) {break;}
 }

// Return the results of the command/query
 return(reader.getResult());
}
}

class Reader extends Thread {
// This class reads data in from the application server
protected DBClient client;
public String Result="original";
public boolean notifyOn=true;

public Reader(DBClient c) {
 super("DBclient Reader");
 this.client = c;
 this.start();
}

public synchronized void run() {
 String line="";

 DataInputStream in=null;
 try {
 in = new DataInputStream(client.socket.getInputStream());
 while(true) {
 // We start reading when we are notified from the main thread
 // and we stop when we have finished reading the stream for
 // this command/query.
 try {if (notifyOn) {this.wait(); notifyOn=false; Result="";}}
 catch (InterruptedException e){
 System.out.println("Caught an Interrupted Exception");
 }
 // Prevent simultaneous access

 line = in.readLine();
 if (line.equalsIgnoreCase("DONE")) {
 notifyOn=true;
 } else
 {
 if (line == null) {
 System.out.println("Server closed connection.");
 break;
 } // if NOT null
 else {Result+=line+"\n";}
 System.out.println("Read from server: "+Result);
 } // if NOT done..
 } //while loop
 }
 catch (IOException e) {System.out.println("Reader: " + e);}
 finally {
 try {if (in != null) in.close();}

import java.applet.Applet;

 catch (IOException e) {
 System.exit(0);
 }
 }
}
public String getResult() {
 return (Result);
 }
}

The client class needs to be instantiated in a Java program, and the connection needs to
be started before any queries can be made. If you remember our Interactive Query Applet
from Chapter 4, this sample applet will certainly look familiar to you.

Listing 11.3 Applet to call our client class.
import java.net.URL;
import java.awt.*;

import DBClient;

public class IQ extends java.applet.Applet {
 Button ConnectBtn = new Button("Connect to Database");
protected DBClient DataConnection;

 TextField QueryField = new TextField(40);
 TextArea OutputField = new TextArea(10,75);

public void init() {
 QueryField.setEditable(true);
 OutputField.setEditable(false);
 DataConnection = new DBClient(getDocumentBase().getHost(), 6001);

 GridBagLayout gridbag = new GridBagLayout();
 GridBagConstraints Con = new GridBagConstraints();
 setLayout(gridbag);
 setFont(new Font("Helvetica", Font.PLAIN, 12));
 setBackground(Color.gray);
 Con.weightx=1.0;
 Con.weighty=0.0;

 Con.anchor = GridBagConstraints.CENTER;
 Con.fill = GridBagConstraints.NONE;
 Con.gridwidth = GridBagConstraints.REMAINDER;
 gridbag.setConstraints(ConnectBtn, Con);
 add(ConnectBtn);

 add(new Label("SQL Query"));
 gridbag.setConstraints(QueryField, Con);
 add(QueryField);

 Label result_label = new Label("Result");
 result_label.setFont(new Font("Helvetica", Font.PLAIN, 16));
 result_label.setForeground(Color.blue);
 gridbag.setConstraints(result_label, Con);
 Con.weighty=1.0;
 add(result_label);

 gridbag.setConstraints(OutputField, Con);
 OutputField.setForeground(Color.white);
 OutputField.setBackground(Color.black);
 add(OutputField);

 show();
 } //init

public boolean handleEvent(Event evt) {

if ((evt.target == QueryField) & (evt.id == Event.KEY_PRESS))
 {char c=(char)evt.key;
 if (c == '\n')
 {
 // When a user enters q query and hits "return," we send the
 // query to be processed and get the results to show in the
 // OutputField.
 DataConnection.ProcessCommand("S");

OutputField.setText(DataConnection.ProcessCommand(QueryField.getText()))
;
 return true;
 }
 }

if ((evt.target == ConnectBtn) & (evt.id == Event.ACTION_EVENT))
 {
 // This is the first command the application server expects,
 // connect to the data source.
 OutputField.setText(DataConnection.ProcessCommand("L"));
 return true;
 }
return false;
} // handleEvent()
}

You’ll need a Web page to call this applet from:
<HTML>
<HEAD>
<TITLE>

JDBC Client Applet - Interactive SQL Command Util via application server
</TITLE>
</HEAD>
<BODY>
<H1>Interactive JDBC SQL command interpreter via application server</H1>
<hr>
<applet code=IQ.class width=450 height=350>
</applet>
<hr>
</BODY>
</HTML>

Summary

In this chapter, we took a brief look at middleware. You saw the advantages and
disadvantages of implementing a three-tier system, and we created a simple application
server and a client server which you can easily extend to fit your needs.

We’re almost at the end of this journey through the JDBC. The next chapter is a reference
chapter of the JDBC API. It contains documentation on the JDBC methods used in the
writing of this book, as well as methods that we didn’t explicitly cover. You may want to
browse through the package tree to get an idea of how the various classes and methods fit
together, as well as their relation to one another.

Chapter 12
The JDBC API
This chapter ends our journey through the JDBC. I’ve provided a summary of the class
interfaces and exceptions that are available in the JDBC API version 1.01, which was the
most current version at the time of this writing. Although this chapter’s primary purpose
is to serve as a reference, you should still read through the sections completely so that
you are aware of all the constructors, variables, and methods available.

Classes

We’ll begin with the class listings. Each class listing includes a description and the class’
constructors, methods, and variables.

public class Date

This class extends the java.util.Date object. But unlike the java util.Date, which stores
time, this class stores the day, year, and month. This is for strict matching with the SQL
date type.

Constructors

Constructor Additional Description

Date(int Year, int Month, int Construct a java.sql.Date

day) object with the appropriate
parameters

Methods

Method Name Additional Description

public String toString()
Formats a Date object as
YYYY-MM-DD

public static Date valueOf
(String str)

Converts a String str to an
sql.Date object

public class DriverManager

This class is used to load a JDBC driver and establish it as an available driver. It is
usually not instantiated, but is called by the JDBC driver.

Constructors

DriverManager()

Methods

Method Name Additional Description

public static void
deregisterDriver(Driver-
JDBCdriver) throws
SQLException

Drops a driver from the
available drivers list

public static synchronized
Connection
getConnection(String URL)
throws SQLException

public static synchronized
Connection
getConnection(String URL,
String LoginName, String
LoginPassword) throws
SQLException

public static synchronized
Connection
getConnection(String URL,
Properties LoginInfo) throws
SQLException

Establishes a connection to
the given database URL, with
the given parameters

public static Driver
getDriver(String URL) throws

Finds a driver that
understands the JDBC URL

SQLException from the registered driver list

public static Enumeration
getDrivers()

Gets an Enumeration of the
available JDBC drivers

public static int
getLoginTimeout()

Indicates the maximum time
(seconds) that a driver will
wait when logging into a
database

public static PrintStream
getLogStream()

Gets the logging PrintStream
used by the DriverManager
and JDBC drivers

public static void
println(String msg)

Sends msg to the current
JDBC logging stream (fetched
from above method)

public static synchronized
void register Driver(Driver
JDBCdriver) throws
SQLException

Specifies that a new driver
class should call
registerDriver when loading
to “register” with the
DriverManager

public static void
setLoginTimeout(int sec)

Indicates the time (in
seconds) that all drivers will
wait when logging into a
database

public static void
setLogStream (PrintStream
log)

Define the PrintStream that
logging messages are sent to
via the println method above

public class DriverPropertyInfo

This class is for developers who want to obtain and set properties for a loaded JDBC
driver. It’s not necessary to use this class, but it is useful for debugging JDBC drivers and
advanced development.

Constructors

Constructor Additional Description

public DriverPropertyInfo
(String propName, String
propValue)

The propName is the name of
the property, and propValue
is the current value; if it’s not
been set, it may be null

Variables

Variable Name Additional Description

choices If the property value is part
of a set of values, then
choices is an array of the
possible values

description The property’s description

name The property’s name

required This is true if this property is
required to be set during
Driver.connect

value
The current value of the
property

public final class Numeric

This special fixed-point, high precision number class is used to store the SQL data types
NUMERIC and DECIMAL.

Constructors

Constructor Additional Description

public Numeric(String
strNum)

Produces a Numeric object
from a string; strNum can be
in one of two formats:
“1234.32” or “3.1E8”

public Numeric(String strNum,
int scale)

Produces a Numeric, and
scale is the number of digits
right of the decimal

public Numeric(int intNum) Produces a Numeric object
from an int Java type
parameter

public Numeric(int intNum, int
scale)

Produces a Numeric object
from an int, and scale gives
the desired number of places
right of the decimal

public Numeric(long x) Produces a Numeric object
from a long Java type
parameter

public Numeric(long x, int
scale)

Produces a Numeric object
from a long parameter, and
scale gives the desired
number of places right of the
decimal

public Numeric(double x, int
scale)

Produces a Numeric object
from a double Java type
parameter, and scale gives
the desired number of places
right of the decimal

public Numeric(Numeric num) Produces a Numeric object
from a Numeric

public Numeric(Numeric num,
int scale)

Produces a Numeric object
from a Numeric, and scale
gives the desired number of
places right of the decimal

Methods

Method Name Additional Description

public Numeric add(Numeric
n)

Performs arithmetic addition
on the reference Numeric
object and the Numeric
argument

public static Numeric
createFromByteArray(byte
byteArray[])

Produces a Numeric object
from the byte array
parameter

public static Numeric
createFromIntegerArray(int
intArray[])

Produces a Numeric object
from the int array parameter

public static Numeric
createFromRadixString(String
str, int radix)

Produces a Numeric object
from the String and int radix
parameters

public static Numeric
createFromScaled(long
longNum, int power)

Produces a Numeric object by
taking the longNum to the
10^power

public Numeric
divide(Numeric q)

Divides the Numeric by the
Numeric parameter q and
returns the result

public double doubleValue() Returns the Numeric as a
Java type double

public boolean equals(Object
objct)

Returns true if the Numeric
object equals the objct
parameter

public float floatValue()
Returns the Numeric as a
Java type float

public static int
getRoundingValue()

Returns the roundingValue
used in rounding operations
in the Numeric object

public int getScale() Returns the number of places
to the right of the decimal

public long getScaled() Returns the Numeric object as
a long, but removes the
decimal (1234.567 ->
1234567); precision may be
lost

public boolean
greaterThan(Numeric num)

Returns true if the Numeric
object is greater than the
Numeric num argument

public boolean
greaterThanOrEquals(Numeric
num)

Returns true if the Numeric
object is greater than or
equal to the Numeric num
argument

public int hashCode() Returns an integer hashcode
for the Numeric object

public Numeric[]
integerDivide(Numeric x)

Returns an array with two
Numeric objects: the first one
is the quotient, the second is
the remainder

public int intValue() Returns the Numeric as a
Java type int, digits after the
decimal are dropped

public boolean
isProbablePrime()

Returns true if the number is
prime; it divides the Numeric
object by several small
primes, and then uses the
Rabin probabilistic primality
test to test if the number is
prime—the failure rate is less
than (1/(4^N))

public boolean
lessThan(Numeric num)

Returns true if the Numeric
object is less than the
Numeric num argument

public boolean Returns true if the Numeric

lessThanOrEquals(Numeric
num)

object is less than or equal to
the Numeric num argument

public long longValue()
Returns the Numeric as a
Java type long

public Numeric modExp
(Numeric numExp, Numeric
numMod)

The two parameters are used
to do a numMod modulus to
the numExp exponent
calculation; returns the result
as a Numeric

public Numeric
modInverse(Numeric
numMod)

The modular multiplicative
inverse is returned using
numMod as the modulus

public Numeric
multiply(Numeric num)

Returns the product of the
Numeric object and the
Numeric num parameter

public static Numeric pi(int
places)

Returns pi to the number of
decimal places

public Numeric pow(int exp) Returns a Numeric object
using the current Numeric
object taken to the power of
the given exponent exp

public static Numeric
random(int bits, Random
randSeed)

Returns a Numeric object that
is a random number using
randSeed as a seed, having
size in bits equal to the bits
parameter

public Numeric
remainder(Numeric num)

Returns the remainder
resulting from dividing this
Numeric object by the
Numeric num parameter

public static void
setRoundingValue(int val)

Sets the rounding value used
in rounding operations for the
Numeric object

public Numeric setScale(int
scale)

Returns a Numeric object
from the current object with
the specified scale parameter

public Numeric shiftLeft(int
numberOfBits)

Returns the Numeric object
with the specified
numberOfBits shifted left

public Numeric shiftRight(int Returns the Numeric object

numberOfBits) with the specified
numberOfBits shifted right

public int significantBits() Returns the number of
significant bits in the Numeric
object

public Numeric sqrt() Returns the square root of
this Numeric object

public Numeric
subtract(Numeric num)

Returns the difference
between the Numeric object
and the Numeric num
parameter

public String toString() Returns a String type that is
the String representation of
the Numeric object

public String toString(int
radix)

Returns a String type that is
the String representation of
the Numeric object, in the
specified radix

Variables

Variable Name Additional Description

public final static Numeric
ZERO

A Numeric equivalent to the
value of 0

public final static Numeric
ONE

A Numeric equivalent to the
value of 1

public class Time

The public class Time is another SQL-JDBC data coversion class. This class extends
java.util.Date, and basically implements the time-storing functions that are not present in
the java.sql.Date class shown earlier.

Constructors

Constructor Additional Description

public Time(int hour, int
minute,
int second)

Makes a Time object with the
specified hour, minute, and
second

Methods

Method Name Additional Description

public String toString() Returns a String with the

Time formatted this way:
HH:MM:SS

public static Time
valueOf(String numStr)

Returns a Numeric object
from the String numStr
parameter that is in the
format: HH:MM:SS

public class TimeStamp

This class is used to map the SQL data type TIMESTAMP. It extends java.util.Date, and
has nanosecond precision for time-stamping purposes.

Constructors

Constructor Additional Description

public Timestamp(int year, int
month, int date, int hour, int
minute, int second, int nano)

Builds a Timestamp object
using the int parameters:
year, month, date, hour,
minute, second, and nano

Methods

Method Name Additional Description

public boolean
equals(Timestamp tstamp)

Compares the Timestamp
object with the Timestamp
parameter tstamp; returns
true if they match

public int getNanos()
Returns the Timestamp
object’s nanoseconds

public void setNanos(int n)
Sets the Timestamp object’s
nanosecond value

public String toString() Returns a formatted String
object with the value of the
Timestamp object in the
format: YYYY-MM-DD
HH:MM:SS.F

public static Timestamp
valueOf(String strts)

Returns a Timestamp object
converted from the strts
parameter that is in the
previous format

public class Types

This class contains the SQL data types as constants. It is used by other classes as the
standard constant for the data types.

Constructors

Constructor Additional Description

public Types() Builds a Types object; not
usually necessary as they can
be accessed as so:
Types.BIGINT

Variables

BIGINT
BINARY
BIT

DOUBLE

Next are the interface listings. As with the class listings, each interface listing includes a
description and the interface’s methods and variables.

CHAR
DATE
DECIMAL

FLOAT
INTEGER
LONGVARBINARY
LONGVARCHAR
NULL
NUMERIC
OTHER (for a database specific data type, not a
standard SQL-92 data type)
REAL
SMALLINT
TIME
TIMESTAMP
TINYINT
VARBINARY
VARCHAR

Interfaces

public interface CallableStatement

This is the primary interface to access stored procedures on a database. If OUT
parameters are specified and a query is executed via this class, its results are fetched from
this class and not the ResultSet class. This class extends the PreparedStatement class,
thus inheriting many of its methods.

The first 15 methods (the get methods) are identical in functionality to those in the
ResultSet class, but they are necessary if OUT parameters are used. See the ResultSet
class for a description of the methods.

Methods

Method Name Additional Description

public abstract boolean
getBoolean(int
parameterIndex) throws
SQLException

public abstract byte
getByte(int parameterIndex)
throws SQLException

public abstract byte[]
getBytes(int parameterIndex)
throws SQLException

public abstract Date
getDate(int parameterIndex)
throws SQLException

public abstract double
getDouble(int
parameterIndex) throws
SQLException

public abstract float
getFloat(int parameterIndex)
throws SQLException

public abstract int getInt(int
parameterIndex) throws
SQLException

public abstract long
getLong(int parameterIndex)
throws SQLException

public abstract Numeric
getNumeric(int
parameterIndex, int scale)
throws SQLException

public abstract Object
getObject(int
parameterIndex) throws
SQLException

public abstract short
getShort(int parameterIndex)
throws SQLException

public abstract String
getString(int parameterIndex)
throws SQLException

public abstract Time
getTime(int parameterIndex)
throws SQLException

public abstract Timestamp
getTimestamp(int
parameterIndex) throws
SQLException

public abstract void
registerOutParameter(int
paramIndex, int sqlDataType)
throws SQLException

Each parameter of the stored
procedure must be registered
before the query is run;
paramIndex is the stored
proc’s parameter location in
the output sequence, and
sqlDataType is the data type
of the parameter at the
specified location
(sqlDataType should be set
from the Type class using one
of its variables, for example,
Types.BIGINT)

public abstract void
registerOutParameter(int
parameterIndex, int
sqlDataType, int scale) throws
SQLException

Specifies the number of
places to the right of the
decimal desired when getting
Numeric data objects

public abstract boolean
wasNull() throws
SQLException

Returns true if the stored
proc parameter was value
NULL

public interface Connection

This is the high-level class used to interact with a database. The object is established from
the DriverManager.getConnection method, which returns this object (Connection).
This class obtains information about the specific database connection via the instantiated
JDBC driver, and its primary use is to perform queries via the createStatement,
prepareCall, and prepareStatement methods, which return Statement, PreparedCall,
and PreparedStatement objects, respectively.

Methods

Method Name Additional Description

public abstract void
clearWarnings() throws
SQLException

Clears the warnings for the
connection

public abstract void close()
throws SQLException

Closes the connection to the
database

public abstract void commit()
throws SQLException

Functions as the JDBC
equivalent of the standard
database commit command; it
applies all commands and
changes made since the last
commit or rollback, including
releasing database locks;
results from queries are
closed when commit is
invoked

public abstract Statement
createStatement() throws
SQLException

Returns a Statement object,
which can then be used to
perform actual queries

public abstract boolean
getAutoClose() throws
SQLException

Returns true if automatic
closing of the connection is
enabled; automatic closing
results in the closing of the
connection when commit or
rollback is performed

public abstract boolean
getAutoCommit() throws
SQLException

Returns true if automatic
committing of the connection
is on; automatic commit is on
by default and means that the
connection is committed on
individual transactions; the
actual commit occurs when
the last row of a result set is
fetched, or when the
ResultSet is closed

public abstract String
getCatalog() throws
SQLException

Returns the current catalog
name for the connection

public abstract
DatabaseMetaData
getMetaData() throws
SQLException

Returns a DatabaseMetaData
object for the current
connection

public abstract int
getTransactionIsolation()
throws SQLException

Returns the transaction
isolation mode of the
connection

public abstract SQLWarning
getWarnings() throws
SQLException

Returns the SQLWarning
object with the warnings for
the connection

public abstract boolean
isClosed() throws
SQLException

Returns true if the connection
has been closed

public abstract boolean
isReadOnly() throws
SQLException

Returns true if the connection
is a read only connection

public abstract String
nativeSQL(String throws
SQLException

Returns the native SQL that
the JDBC driver sqlQuery)
would send to the database
for the specified sqlQuery
parameter

public abstract
CallableStatement
prepareCall(String sqlQuery)
throws SQLException

Returns a CallableStatement
object used to perform stored
procedures; note that the SQL
query must be passed in as
the sqlQuery parameter here

public abstract
PreparedStatement
prepareStatement(String
sqlQuery) throws
SQLException

Returns a PreparedStatement
object used to perform the
specified sqlQuery; this query
can be executed repeatedly if
desired by using the
PreparedStatement.execute
method

public abstract void rollback()
throws SQLException

Drops changes made since the
last commit or rollback, and
closes respective results;
database locks are also
released

public abstract void
setAutoClose (boolean throws
SQLException

Sets the connection to auto
close mode if the auto) auto
parameter is true

public abstract void throws
SQLException

Sets the connection to auto
commit mode if
setAutoCommit(boolean auto)
the auto parameter is true

public abstract void
setCatalog (String catalog)
throws SQLException

The catalog may be changed
by specifying the catalog

public abstract void
setReadOnly(boolean
readOnly) throws
SQLException

Sets the connection to read
only mode

public abstract void
setTransactionIsolation(int
level) throws SQLException

Sets translation isolation to
the specified level

Variables

The following constants are used in the setTransactionIsolation method as the level
parameter:

TRANSACTION_NONE
TRANSACTION_READ_COMMITTED
TRANSACTION_READ_UNCOMMITTED
TRANSACTION_REPEATABLE_READ
TRANSACTION_SERIALIZABLE

public interface DatabaseMetaData

This class contains useful information about the open connection to the database. The
Connection.getMetaData method returns a Database-MetaData object that is specific
to the opened connection.

Methods

Method Name Additional Description

public abstract boolean
allProceduresAreCallable() throwsk
SQLException

Returns true if all the
procedures available to
the user are callable

public abstract boolean
allTablesAreSelectable() throws
SQLException

Returns true if all of the
tables are accessible to
the user on the open
connection

public abstract boolean Returns true if data

dataDefinitionCausesTransactionCommit()
throws SQLException

defintion causes the
transaction to commit

public abstract boolean
dataDefinitionIgnoredInTransactions()
throws SQLException

Returns true if data
defintion is ignored in
the transaction

public abstract boolean
doesMaxRowSizeIncludeBlobs() throws
SQLException

Returns true if the
getMaxSize method does
not account for the size
of LONGVARCHAR and
LONGVARBINARY SQL
data types

public abstract ResultSet
getBestRowIdentifier(String catalog,
String
schema, String table, int scope, boolean
nullok) throws SQLException

Returns a ResultSet
object for the specified
parameters that gets the
specified table’s key or
the attributes that can be
used to uniquely identify
a row, which may be
composite; the scope
parameter is one of the
constants:
bestRowTemporary,
bestRowTransaction, or
betRowSession; the
nullok parameter allows
columns that may be
null; the ResultSet is
composed of the
following columns: scope
(of the same types as
above scope parameter),
column name, SQL data
type, name of the data
type dependent on the
database, precision,
buffer length, significant
places if a Numeric type,
and pseudo column (one
of the constants
bestRowUnknown,
bestRowNotPseudo, or
bestRowPseudo)

public abstract ResultSet getCatalogs()
throws SQLException

Returns a ResultSet
object that contains a
column for the catalog
names that are in the
database

public abstract
String getCatalogSeparator() throws
SQLException

Returns the separator
between the catalog
String and the table
name

public abstract String getCatalogTerm()
throws SQLException

Returns the database-
specific term for
“catalog”

public abstract ResultSet
getColumnPrivileges(String catalog,
String schemaString table, String
columnNamePattern) throws
SQLException

Returns a ResultSet
object that contains
information about the
specified table’s
matching
columnNamePattern; the
returned ResultSet object
contains the following
columns: the catalog
name that the table is in,
the schema the table is
in, the table name, the
column name, owner of
the table, grantee, type
of access (SELECT,
UPDATE, etc.), and if the
grantee can grant access
to others, “YES,” “NO,”
or null (if unknown)

public abstract ResultSet
getColumns(String catalog,
String schemaPattern, String
tableNamePattern,
String columnNamePattern) throws
SQLException

Returns a ResultSet
object that contains
information about the
matching columns for the
matching tables and
schemas; the ResultSet
contains the following
columns: catalog name,
schema name, table
name, column name, SQL
data type, name of the

type specific to the
database, the maximum
number of characters or
precision depending on
the data type, buffer
length (not used), the
number of digits (if
applicable), radix (if
applicable), null-ability
(one of the constants
columnNoNulls,
columnNullable,
columnNullableUnknown),
comments for the
column, default value (if
it exists, else null),
empty column, empty
column, maximum
number of bytes in the
column of type CHAR (if
applicable), index
number of column; the
last column is set to
“YES” if it can contain
NULLS if not “NO” else
it’s empty if the status is
unknown

public abstract ResultSet get
CrossReference(String primaryCatalog,
String primarySchema,
String primaryTable, String
foreignCatalog,
String foreignSchema, String
foreignTable)
throws SQLException

Returns a ResultSet
object that describes the
way a table imports
foreign keys; the
ResultSet object returned
by this method contains
these columns: primary
key’s table catalog,
primary key’s table
schema, primary key’s
table, primary key’s
column name, foreign
key’s table catalog,
foreign key’s table
schema, foreign key’s
table, foreign key’s

column name, sequence
number within foreign
key, action to foreign key
when primary key is
updated (one of the
constants
importedKeyCascade,
importedKeyRestrict,
importedKeySetNull),
action to foreign key
when primary key is
deleted (one of the
constants
importedKeyCascade,
importedKeyRestrict,
importedKeySetNull),
foreign key identifier,
and primary key
indentifier

public abstract String
getDatabaseProductName() throws
SQLException

Returns the database
product name

public abstract String
getDatabaseProductVersion() throws
SQLException

Returns the database
product number

public abstract int
getDefaultTransactionIsolation() throws
SQLException

Returns the default
transaction isolation
level as defined by the
applicable constants in
the Connection class

public abstract int
getDriverMajorVersion()

Gets the driver’s major
version

public abstract int
getDriverMinorVersion()

Gets the driver’s minor
version

public abstract String getDriverName()
throws SQLException

Returns the name of the
JDBC driver

public abstract String getDriverVersion()
throws SQLException

Returns the version of
the JDBC driver

public abstract ResultSet
getExportedKeys(String catalog, String
schema, String table) throws

Returns a ResultSet
object that describes the
foreign key attributes

SQLException that reference the
specified table’s primary
key; the ResultSet object
returns the following
columns: primary key’s
table catalog, primary
key’s table schema,
primary key’s table,
primary key’s column
name, foreign key’s table
catalog, foreign key’s
table schema, foreign
key’s table, foreign key’s
column name, sequence
number within foreign
key, action to foreign key
when primary key is
updated (one of the
constants
importedKeyCascade,
importedKeyRestrict,
importedKeySetNull),
action to foreign key
when primary key is
deleted (one of the
constants
importedKeyCascade,
importedKeyRestrict,
importedKeySetNull),
foreign key identifier,
and primary key
indentifier

public abstract String
getExtraNameCharacters() throws
SQLException

Returns characters that
can be used in unquoted
identifier names besides
the standard A through
Z, 0 through 9, and _

public abstract String
getIdentifierQuoteString() throws
SQLException

Returns the String used
to quote SQL identifiers

public abstract ResultSet
getImportedKeys(String String schema,
String table) throws SQLException

Returns a ResultSet
object that describes the
primary key attributes

that are referenced by
the specified table’s
foreign key attributes;
the ResultSet object
contains the following
columns: primary key’s
table catalog, primary
key’s table schema,
primary key’s table,
primary key’s column
name, foreign key’s table
catalog, foreign key’s
table schema, foreign
key’s table, foreign key’s
column name, sequence
number within foreign
key, action to foreign key
when primary key is
updated (one of the
constants
importedKeyCascade,
importedKeyRestrict,
importedKeySetNull),
action to foreign key
when primary key is
deleted (one of the
constants
importedKeyCascade,
importedKeyRestrict,
importedKeySetNull),
foreign key identifier,
and primary key
indentifier

public abstract ResultSet
getIndexInfo(String catalog, String
schema, String table, boolean unique,
boolean approximate) throws
SQLException

Returns a ResultSet
object that describes the
specified table’s indices
and statistics; the
ResultSet object contains
the following columns:
catalog name, schema
name, table name,
“false” boolean (if
tableIndexStatic is the

type), index catalog (or
null if type is
tableIndexStatic), index
type, sequence number,
column name, column
sort sequence, number of
unique values in the
table or number of rows
(if tableIndexStatic),
number of pages used for
the index (or the number
of pages used for the
table if
tableIndexStatic), and
filter condition (if it
exists)

public abstract int
getMaxBinaryLiteralLength() throws
SQLException

Returns the number of
hex characters allowed in
an inline binary literal

public abstract int
getMaxCatalogNameLength() throws
SQLException

The maximum length for
a catalog name

public abstract int
getMaxCharLiteralLength() throws
SQLException

Returns the maximum
length for a character
literal

public abstract int
getMaxColumnNameLength() throws
SQLException

Indicates the maximum
length for a column name

public abstract int
getMaxColumnsInGroupBy() throws
SQLException

Indicates the maximum
number of columns in a
GROUP BY clause

public abstract int
getMaxColumnsInIndex() throws
SQLException

Indicates the maximum
number of columns in an
index

public abstract int
getMaxColumnsInOrderBy() throws
SQLException

Indicates the maximum
number of columns
allowed in a ORDER BY
clause

public abstract int
getMaxColumnsInSelect() throws
SQLException

Indicates the maximum
number of columns in a
SELECT statement

public abstract int
getMaxColumnsInTable() throws
SQLException

Indicates the maximum
number of columns
allowed in a table

public abstract int getMaxConnections()
throws SQLException

Indicates the maximum
number of simultaneous
connections allowed to
the database

public abstract int
getMaxCursorNameLength() throws
SQLException

Returns the maximum
allowed length of a
cursor name

public abstract int
getMaxIndexLength() throws
SQLException

Returns the maximum
length of an index in
bytes

public abstract int
getMaxProcedureNameLength() throws
SQLException

Returns the maximum
allowed length of a
procedure name

public abstract int getMaxRowSize()
throws SQLException

Indicates the maximum
row size

public abstract int
getMaxSchemaNameLength() throws
SQLException

Returns the maximum
allowed length of a
schema name

public abstract int
getMaxStatementLength() throws
SQLException

Returns the maximum
allowed length of a SQL
statement

public abstract int getMaxStatements()
throws SQLException

Returns the maximum
number of statements
allowed at one time

public abstract int
getMaxTableNameLength() throws
SQLException

Returns the maximum
allowed length of a table
name

public abstract int
getMaxTablesInSelect()
throws SQLException

Indicates the maximum
number of tables allowed
in a SELECT statement

public abstract int
getMaxUserNameLength() throws
SQLException

Returns the maximum
allowed length of a user
name

public abstract String
getNumericFunctions() throws
SQLException

Returns a comma-
separated list of the
math functions available

public abstract Returns a ResultSet

ResultSet getPrimaryKeys(String catalog,
String schema, String table) throws
SQLException

object that contains the
primary key’s description
for the specified table;
the ResultSet object
contains the following
columns: catalog name,
schema name, table
name, column name,
sequence number,
primary key name, and,
possibly, NULL

public abstract ResultSet
getProcedureColumns(String catalog,
String schemaPattern, String
procedureNamePattern, String
columnNamePattern) throws
SQLException

Returns a ResultSet
object that describes the
catalog’s stored
procedures and result
columns matching the
specified
procedureNamePatten
and columnNamePattern;
the ResultSet object
contains the following
columns: catalog name,
schema name, procedure
name, column or
parameter name, column
type, data type, data
name, precision, length
in bytes, scale, radix,
nullability, and
comments

public abstract ResultSet
getProcedures(String catalogString String
procedureNamePattern) throws
SQLException

Returns a ResultSet
object that describes the
catalog’s procedures; the
ResultSet object contains
the following columns:
catalog name, schema
name, procedure name,
empty column, empty
column, empty column,
comments about the
procedure, and kind of
procedure

public abstract String Return the database-

getProcedureTerm() throws SQLException specific term for
procedure

public abstract ResultSet getSchemas()
throws SQLException

Returns a ResultSet
object that describes the
schemas in a database;
the ResultSet object
contains one column that
contains the schema
names

public abstract String
getSchemaTerm() throws
SQLException

Returns the database-
specific term for schema

public abstract String
getSearchStringEscape() throws
SQLException

Returns the escape
characters for pattern
searching

public abstract String getSQLKeywords()
throws SQLException

Returns a comma-
separated list of
keywords that the
database recognizes, but
the keywords are not
SQL-92 keywords

public abstract String
getStringFunctions()
throws SQLException

Returns a comma-
separated list of string
functions in the database

public abstract String
getSystemFunctions() throws
SQLException

Returns a comma-
separated list of system
functions in the database

public abstract ResultSet
getTablePrivileges(String catalog, String
schemaPattern schemaPattern, String
tableNamePattern)
throws SQLException

Returns a ResultSet
object that describes the
privileges for the
matching and
tableNamePattern; the
ResultSet object contains
the following columns:
catalog name, schema
name, table name,
grantor, grantee, type of
access, and “YES” if a
grantee can grant other
access

public abstract ResultSet Returns a ResultSet

getTables(String
catalog, String schemaPattern, String
tableNamePattern, String types[])
throws SQLException

object that describes
tables matching the
schemaPattern and
tableNamePattern; the
ResultSet object contains
the following columns:
catalog name, schema
name, table name, table
type, and comments

public abstract ResultSet getTableTypes()
throws SQLException

Returns a ResultSet
object that describes the
table types available in
the database; the
ResultSet object contains
the column that is a list
of the table types

public abstract String
getTimeDateFunctions() throws
SQLException

Returns the date and
time functions for the
database

public abstract ResultSet getTypeInfo()
throws SQLException

Returns a ResultSet
object that describes the
SQL data types
supported by the
database; the ResultSet
object contains the
columns: type name, SQL
data type constants in
the Types class,
maximum precision,
prefix used to quote a
literal, suffix used to
quote a literal,
parameters used to
create the type,
nullability, case
sensitivity, searchability,
signed or unsigned
(boolean), is it a
currency, auto
incrementable or not,
local version of data
type, minimum scale,
maximum scale, empty

column, empty column,
and radix

public abstract String getURL() throws
SQLException

The URL for the database

public abstract String getUserName()
throws SQLException

Returns the user name as
known by the database

public abstract ResultSet
getVersionColumns(String catalog,
String String table) throws SQLException

Returns a ResultSet
object that describes the
specified table’s columns
that are updated when
any column is updated in
the table; the ResultSet
object contains the
following columns: empty
columns, column name,
SQL datatype, type
name, precision, column
value length in bytes,
scale, and pseudoColumn
or not

public abstract boolean isCatalogAtStart()
throws SQLException

Returns true if the
catalog name appears at
the start of a qualified
table name

public abstract boolean isReadOnly()
throws SQLException

Returns true if the
database is in read only
mode

public abstract boolean
nullPlusNonNullIsNull() throws
SQLException

Returns true if a
concatenation between a
NULL and non-NULL is
NULL

public abstract boolean
nullsAreSortedAtEnd()
throws SQLException

public abstract boolean
nullsAreSortedAtStart()
throws SQLException

public abstract boolean
nullsAreSortedHigh()
throws SQLException

public abstract boolean
nullsAreSortedLow()
throws SQLException

public abstract boolean
storesLowerCaseIdentifiers()
throws SQLException

public abstract boolean
storesLowerCaseQuotedIdentifiers()
throws SQLException

public abstract boolean
storesMixedCaseIdentifiers() throws
SQLException

public abstract boolean
storesMixedCaseQuotedIdentifiers()
throws SQLException

public abstract boolean
storesUpperCaseIdentifiers()
throws SQLException

public abstract boolean
storesUpperCaseQuotedIdentifiers()
throws SQLException

public abstract boolean
supportsAlterTableWithAddColumn()
throws SQLException

public abstract boolean
supportsAlterTableWithDropColumn()
throws SQLException

public abstract boolean
supportsAlterTableWithDropColumn()
throws SQLException

public abstract boolean
supportsANSI92EntryLevelSQL() throws
SQLException

public abstract boolean
supportsANSI92FullSQL() throws
SQLException

public abstract boolean
supportsANSI92IntermediateSQL() throws
SQLException

public abstract boolean

supportsANSI92FullSQL() throws
SQLException

public abstract boolean
supportsCatalogsInDataManipulation()
throws SQLException

public abstract boolean
supportsCatalogsInIndexDefinitions()
throws SQLException

public abstract boolean
supportsCatalogsInPrivilegeDefinitions()
throws SQLException

public abstract boolean
supportsCatalogsInProcedureCalls()
throws SQLException

public abstract boolean
supportsCatalogsInTableDefinitions()
throws SQLException

public abstract boolean
supportsColumnAliasing() throws
SQLException

public abstract boolean
supportsConvert() throws SQLException

public abstract boolean
supportsConvert(int fromType, int
toType) throws SQLException

public abstract boolean
supportsCoreSQLGrammar() throws
SQLException

public abstract boolean
supportsCorrelatedSubqueries() throws
SQLException

public abstract boolean
supportsDataDefinitionAnd
DataManipulationTransactions() throws
SQLException

public abstract boolean
supportsDataManipulation
TransactionsOnly() throws SQLException

public abstract boolean
supportsDifferentTableCorrelationNames()

throws SQLException

public abstract boolean
supportsExpressionsInOrderBy() throws
SQLException

public abstract boolean
supportsExtendedSQLGrammar() throws
SQLException

public abstract boolean
supportsFullOuterJoins() throws
SQLException

public abstract boolean
supportsGroupBy() throws SQLException

public abstract boolean
supportsGroupByBeyondSelect() throws
SQLException

public abstract boolean
supportsGroupByUnrelated() throws
SQLException

public abstract boolean
supportsIntegrityEnhancementFacility()
throws SQLException

public abstract boolean
supportsLikeEscapeClause() throws
SQLException

public abstract boolean
supportsLimitedOuterJoins() throws
SQLException

public abstract boolean
supportsMinimumSQLGrammar() throws
SQLException

public abstract boolean
supportsMixedCaseIdentifiers() throws
SQLException

public abstract boolean
supportsMixedCaseQuotedIdentifiers()
throws SQLException

public abstract boolean
supportsMultipleResultSets() throws
SQLException

public abstract boolean
supportsMultipleTransactions() throws
SQLException

public abstract boolean
supportsNonNullableColumns() throws
SQLException

public abstract boolean
supportsOpenCursorsAcrossCommit()
throws SQLException

public abstract boolean
supportsOpenCursorsAcrossRollback()
throws SQLException

public abstract boolean
supportsOpenStatementsAcrossCommit()
throws SQLException

public abstract boolean
supportsOpenStatementsAcrossRollback()
throws SQLException

public abstract boolean
supportsOrderByUnrelated()
throws SQLException

public abstract boolean
supportsOuterJoins()
throws SQLException

public abstract boolean
supportsPositionedDelete()
throws SQLException

public abstract boolean
supportsPositionedUpdate()
throws SQLException

public abstract boolean
supportsSchemasInDataManipulation()
throws SQLException

public abstract boolean
supportsSchemasInProcedureCalls()
throws SQLException

public abstract boolean
supportsSchemasInProcedureCalls()
throws SQLException

public abstract boolean

supportsSchemasInTableDefinitions()
throws SQLException

public abstract boolean
supportsSelectForUpdate()
throws SQLException

public abstract boolean
supportsStoredProcedures()
throws SQLException

public abstract boolean
supportsSubqueriesInComparisons()
throws SQLException

public abstract boolean
supportsSubqueriesInExists()
throws SQLException

public abstract boolean
supportsSubqueriesInIns()
throws SQLException

public abstract boolean
supportsSubqueriesInQuantifieds()
throws SQLException

public abstract boolean
supportsTableCorrelationNames() throws
SQLException

public abstract boolean
supportsTransactionIsolationLevel(int
level) throws SQLException

public abstract boolean
supportsTransactions() throws
SQLException

public abstract boolean
supportsUnion() throws SQLException

public abstract boolean
supportsUnionAll() throws SQLException

public abstract boolean
usesLocalFilePerTable() throws
SQLException

public abstract boolean
usesLocalFiles() throws SQLException

Variables

public final static int bestRowNotPseudo
public final static int bestRowPseudo
public final static int versionColumnUnknown
public final static int versionColumnNotPseudo
public final static int versionColumnPseudo
public final static int importedKeyCascade
public final static int importedKeyRestrict
public final static int importedKeySetNull
primary key has been updated or deleted
public final static int typeNoNulls
public final static int typeNullable
public final static int typeNullableUnknown
public final static int typePredNone
public final static int typePredChar
public final static int typePredBasic
public final static int typeSearchable
public final static short tableIndexStatistic
public final static short tableIndexClustered
public final static short tableIndexHashed
public final static short tableIndexOther

public interface Driver

The JDBC driver implements this interface. The JDBC driver must create an instance of
itself and then register with the DriverManager.

Methods

Method Name Additional Description

public abstract boolean
acceptsURL(String URL)
throws SQLException

Returns true if the driver can
connect to the specified
database in the URL

public abstract Connection
connect(String url, Properties
props) throws SQLException

Connects to the database
specified in the URL with the
specified Properties props

public abstract int
getMajorVersion()

Returns the JDBC driver’s
major version number

public abstract int
getMinorVersion()

Returns the JDBC driver’s
minor version number

public abstract
DriverPropertyInfo[]
getPropertyInfo(String URL,
Properties props) throws

Returns an array of
DriverPropertyInfo that
contains possible properties
based on the supplied URL

SQLException and props

public abstract boolean
jdbcCompliant()

Returns true if the JDBC
driver can pass the JDBC
compliance suite

public interface PreparedStatement

This object extends Statement, and it is used to perform queries that will be repeated.
This class exists primarily to optimize queries that will be executed repeatedly.

Methods

Note: The set methods set the parameter at the
paramIndex location in the prepared query to the specif ied
paramType object.

Method Name Additional Description

public abstract void
clearParameters() throws
SQLException

Resets all of the
PreparedStatment’s query
parameters

public abstract boolean
execute() throws
SQLException

Runs the prepared query
against the database; this
method is used primarily if
multiple ResultSets are
expected

public abstract ResultSet
executeQuery() throws
SQLException

Executes the prepared query

public abstract int
executeUpdate() throws
SQLException

Executes the prepared query;
this method is used for
queries that do not produce a
ResultSet (such as Update);
returns the number or rows
affected or 0 if nothing is
returned by the SQL command

public abstract void
setAsciiStream(int
paramIndex, InputStream
paramType, int length) throws
SQLException

public abstract void
setBinaryStream(int
paramIndex, InputStream

paramType, int length) throws
SQLException

public abstract void
setBoolean(int paramIndex,
boolean paramType) throws
SQLException

public abstract void
setByte(int paramIndex, byte
paramType) throws
SQLException

public abstract void
setBytes(int paramIndex,
byte paramType[]) throws
SQLException

public abstract void
setDate(int paramIndex, Date
paramType) throws
SQLException

public abstract void
setDouble(int double
paramType) throws
SQLException

public abstract void
setFloat(int paramIndex, float
paramType) throws
SQLException

public abstract void setInt(int
paramIndex, int paramType)
throws SQLException

public abstract void
setLong(int paramIndex, long
paramType) throws
SQLException

public abstract void
setNull(int paramIndex, int
sqlType) throws SQLException

public abstract void
setNumeric(int paramIndex,
Numeric paramType) throws
SQLException

public abstract void
setObject(int paramIndex,
Object paramType) throws
SQLException

public abstract void
setObject(int paramIndex,
Object paramType, int
targetSqlType) throws
SQLException

public abstract void
setObject(int paramIndex,
Object paramType, int
targetSqlType, int scale)
throws SQLException

public abstract void
setShort(int paramIndex,
short paramType) throws
SQLException

public abstract void
setString(int paramIndex,
String paramType) throws
SQLException

public abstract void
setTime(int paramIndex, Time
paramType) throws
SQLException

public abstract void
setTimestamp(int
TimestampparamType) throws
SQLException

public abstract void
setUnicodeStream(int
paramIndexInputStream
paramType, int length) throws
SQLException

public interface ResultSet

The results of a query are stored in this object, which is returned when the respective
query execute method is run for the Statement, PreparedStatement, and
CallableStatement methods. The get methods in this class fetch the result for the
specified column, but the proper data type must be matched for the column. The

getMetaData method in this class can facilitate the process of checking the data type in
each column of the result set.

Methods

Method Name Additional Description

public abstract void
clearWarnings() throws
SQLException

Clears the warnings for the
ResultSet

public abstract void close()
throws SQLException

Closes the ResultSet

public abstract int
findColumn(String
columnName) throws
SQLException

Gets the column number for
the specified columnName in
the ResultSet

public abstract
ResultSetMetaData
getMetaData() throws
SQLException

Returns a ResultSetMetaData
object that contains
information about the query’s
resulting table

public abstract InputStream
getAsciiStream(int
columnIndex) throws
SQLException

Fetches the result from the
current row in the specified
column (the column number -
columnIndex) in the resulting
table

public abstract InputStream
getAsciiStream(String
columnName) throws
SQLException

Fetches the result from the
current row in the specified
column (the column name -
columnName) in the resulting
table

public abstract InputStream
getBinaryStream(int
columnIndex) throws
SQLException

Fetches the result from the
current row in the specified
column (the column number -
columnIndex) in the resulting
table

public abstract InputStream
getBinaryStream(String
columnName) throws
SQLException

Fetches the result from the
current row in the specified
column (the column name -
columnName) in the resulting
table

public abstract boolean Fetches the result from the

getBoolean(int columnIndex)
throws SQLException

current row in the specified
column (the column number -
columnIndex) in the resulting
table

public abstract boolean
getBoolean(String
columnName) throws
SQLException

Fetches the result from the
current row in the specified
column (the column name -
columnName) in the resulting
table

public abstract byte
getByte(int columnIndex)
throws SQLException

Fetches the result from the
current row in the specified
column (the column number -
columnIndex) in the resulting
table

public abstract byte
getByte(String columnName)
throws SQLException

Fetches the result from the
current row in the specified
column (the column name -
columnName) in the resulting
table

public abstract byte[]
getBytes(int columnIndex)
throws SQLException

Fetches the result from the
current row in the specified
column (the column number -
columnIndex) in the resulting
table

public abstract byte[]
getBytes(String columnName)
throws SQLException

Fetches the result from the
current row in the specified
column (the column name -
columnName) in the resulting
table

public abstract String
getCursorName() throws
SQLException

This returns a String with this
ResultSet’s cursor name

public abstract Date
getDate(int columnIndex)
throws SQLException

Fetches the result from the
current row in the specified
column (the column number -
columnIndex) in the resulting
table

public abstract Date
getDate(String columnName)
throws SQLException

Fetches the result from the
current row in the specified
column (the column name -
columnName) in the resulting

table

public abstract double
getDouble(int columnIndex)
throws SQLException

Fetches the result from the
current row in the specified
column (the column number -
columnIndex) in the resulting
table

public abstract double
getDouble(String
columnName) throws
SQLException

Fetches the result from the
current row in the specified
column (the column name -
columnName) in the resulting
table

public abstract float
getFloat(int columnIndex)
throws SQLException

Fetches the result from the
current row in the specified
column (the column number -
columnIndex) in the resulting
table

public abstract float
getFloat(String columnName)
throws SQLException

Fetches the result from the
current row in the specified
column (the column name -
columnName) in the resulting
table

public abstract int getInt(int
columnIndex) throws
SQLException

Fetches the result from the
current row in the specified
column (the column number -
columnIndex) in the resulting
table

public abstract int
getInt(String columnName)
throws SQLException

Fetches the result from the
current row in the specified
column (the column name -
columnName) in the resulting
table

public abstract long
getLong(int columnIndex)
throws SQLException

Fetches the result from the
current row in the specified
column (the column number -
columnIndex) in the resulting
table

public abstract long
getLong(String columnName)
throws SQLException

Fetches the result from the
current row in the specified
column (the column name -
columnName) in the resulting
table

public abstract Numeric
getNumeric(int columnIndex,
int scale) throws
SQLException

Fetches the result from the
current row in the specified
column (the column number -
columnIndex) in the resulting
table

public abstract Numeric
getNumeric(String
columnName, int scale)
throws SQLException

Fetches the result from the
current row in the specified
column (the column name -
columnName) in the resulting
table

public abstract Object
getObject(int columnIndex)
throws SQLException

Fetches the result from the
current row in the specified
column (the column number -
columnIndex) in the resulting
table

public abstract Object
getObject(String
columnName) throws
SQLException

Fetches the result from the
current row in the specified
column (the column name -
columnName) in the resulting
table

public abstract short
getShort(int columnIndex)
throws SQLException

Fetches the result from the
current row in the specified
column (the column number -
columnIndex) in the resulting
table

public abstract short
getShort(String columnName)
throws SQLException

Fetches the result from the
current row in the specified
column (the column name -
columnName) in the resulting
table

public abstract String
getString(int columnIndex)
throws SQLException

Fetches the result from the
current row in the specified
column (the column number -
columnIndex) in the resulting
table

public abstract String
getString(String
columnName) throws
SQLException

Fetches the result from the
current row in the specified
column (the column name -
columnName) in the resulting
table

public abstract Time Fetches the result from the

getTime(int columnIndex)
throws SQLException

current row in the specified
column (the column number -
columnIndex) in the resulting
table

public abstract Time
getTime(String columnName)
throws SQLException

Fetches the result from the
current row in the specified
column (the column name -
columnName) in the resulting
table

public abstract Timestamp
getTimestamp (int
columnIndex) throws
SQLException

Fetches the result from the
current row in the specified
column (the column number -
columnIndex) in the resulting
table

public abstract Timestamp
getTimestamp(String
columnName) throws
SQLException

Fetches the result from the
current row in the specified
column (the column name -
columnName) in the resulting
table

public abstract InputStream
getUnicodeStream(int
columnIndex) throws
SQLException

Fetches the result from the
current row in the specified
column (the column number -
columnIndex) in the resulting
table

public abstract InputStream
getUnicodeStream(String
columnName) throws
SQLException

Fetches the result from the
current row in the specified
column (the column name -
columnName) in the resulting
table

public abstract SQLWarning
getWarnings() throws
SQLException

Returns the warnings for the
ResultSet

public abstract boolean next()
throws SQLException

Retrieves the next row of the
resulting table

public abstract boolean
wasNull() throws
SQLException

Returns true if the last
column read by one of the get
methods was NULL

public interface ResultSetMetaData

This methods allows access to information about a query’s results, but not the results
themselves. This object is created by the ResultSet.getMetaData method.

Methods

Method Name Additional Description

public abstract String
getCatalogName(int column)
throws SQLException

Returns the name of the
catalog hit by the query

public abstract int
getColumnCount() throws
SQLException

Returns the number of
columns in the resulting table

public abstract int
getColumnDisplaySize(int
column) throws SQLException

Returns the specified
column’s maximum size

public abstract String
getColumnLabel(int column)
throws SQLException

Gets a label, if it exists, for
the specified column in the
result set

public abstract String
getColumnName(int column)
throws SQLException

Gets a name for the specific
column number in the
resulting table

public abstract int
getColumnType(int column)
throws SQLException

Returns a constant in the
Type class that is the JDBC
type of the specified column
in the result set

public abstract String
getColumnTypeName(int
column) throws SQLException

Gets the name of the type of
the specified column in the
result set

public abstract int
getPrecision(int column)
throws SQLException

Returns the precision of the
data in the specified column,
if applicable

public abstract int
getScale(int column) throws
SQLException

Returns the scale of the data
in the specified column, if
applicable

public abstract String
getSchemaName(int column)
throws SQLException

Returns the name of the
schema that was accessed in
the query to produce the
result set for the specific
column

public abstract String
getTableName(int column)

Returns the name of the table
from which the specified

throws SQLException column in the result set came
from

public abstract boolean
isAutoIncrement (int column)
throws SQLException

Returns true if the specified
column is automatically
numbered

public abstract boolean
isCaseSensitive (int column)
throws SQLException

Returns true if the specified
column’s contents are case
sensitive, if applicable

public abstract boolean
isCurrency(int column) throws
SQLException

Returns true if the content of
the specific column in the
result set was a currency

public abstract boolean
isDefinitelyWritable(int
column) throws SQLException

Returns true if a write
operation in the specified
column can be done for
certain

public abstract int
isNullable(int column) throws
SQLException

Returns true if the specified
column accepts NULL entries

public abstract boolean
isReadOnly(int column)
throws SQLException

Returns true if the specified
column is read only

public abstract boolean
isSearchable(int column)
throws SQLException

Returns true if the WHERE
clause can be a part of the
SQL query performed on the
specified column

public abstract boolean
isSigned(int column) throws
SQLException

Returns true if the data
contained in the specified
column in the result set is
signed, if applicable

public abstract boolean
isWritable(int column) throws
SQLException

Returns true if a write on the
specified column is possible

Variables

Variable Name Additional Description

public final static int
columnNoNulls

NULL values not allowed

public final static int
columnNullable

NULL values allowed

public final static int NULL values may or may not

columnNullableUnknown be allowed, uncertain

public interface Statement

This class is used to execute a SQL query against the database via the Connection object.
The Connection.createStatement returns a Statement object. Methods in the Statement
class produce ResultSet objects which are used to fetch the result of a query executed in
this class.

Methods

Method Name Additional Description

public abstract void cancel()
throws SQLException

If a query is running in
another thread, a foreign
thread can cancel it by calling
this method on the local
Statement object’s
instantiation

public abstract void
clearWarnings() throws
SQLException

Clears the warnings for the
Statement

public abstract void close()
throws SQLException

Closes the Statement and
frees its associated resources,
including any ResultSets

public abstract boolean
execute(String sql) throws
SQLException

Executes the parameter sql,
which is an SQL query; this
method accounts for multiple
ResultSets

public abstract ResultSet
executeQuery(String sql)
throws SQLException

Executes a query that returns
a ResultSet object (produces
some results) using the sql
parameter as the SQL query

public abstract int
executeUpdate(String sql)
throws SQLException

Executes a query that does
not produce a resulting table;
the method returns the
number of rows affected or 0
if no result is produced

public abstract int
getMaxFieldSize() throws
SQLException

Returns the maximum amount
of data returned for a
resulting column; applies only
to the following SQL
datatypes: BINARY,
VARBINARY,

LONGVARBINARY, CHAR,
VARCHAR, and LONGVARCHAR

public abstract int
getMaxRows() throws
SQLException

Returns the maximum number
of rows a ResultSet can
contain

public abstract boolean
getMoreResults() throws
SQLException

Returns true if the next
ResultSet of the query is
present, and moves the
ResultSet into the current
result space

public abstract int
getQueryTimeout() throws
SQLException

Returns the number of
seconds that the JDBC driver
will wait for a query to
execute

public abstract ResultSet
getResultSet() throws
SQLException

Returns a ResultSet object
that is the current result of
the query; only one of these
is returned if only one
ResultSet is the result of the
query; if more ResultSets are
present, the getMoreResults
method is used to move to
the next ResultSet

public abstract int
getUpdateCount() throws
SQLException

Returns the update count; if
the result is a ResultSet, -1 is
returned

public abstract SQLWarning
getWarnings() throws
SQLException

Returns the warnings
encountered for the query of
this Statement object

public abstract void
setCursorName(String name)
throws SQLException

Sets the name of a cursor for
future reference, and uses it
in update statements

public abstract void
setEscapeProcessing(boolean
enable) throws SQLException

Sets escape substitution
processing

public abstract void
setMaxFieldSize(int max)
throws SQLException

Sets the maximum amount of
data that can be returned for
a column of type BINARY,
VARBINARY,
LONGVARBINARY, CHAR,
VARCHAR, and LONGVARCHAR

public abstract void
setMaxRows(int max) throws
SQLException

Sets the maximum number of
rows that can be retrieved in
a ResultSet

public abstract void
setQueryTimeout(int seconds)
throws SQLException

Sets the time a driver will
wait for a query to execute

Exceptions

Finally, we get to the exceptions. As with the other sections, the exception listings
include a description and the class’ constructors and methods.

public class DataTruncation

This class extends SQLWarning. An exception is produced when data transfer is
prematurely terminated on a write operation, and a warning is generated when data
transfer is prematurely terminated on a read operation. You can use the methods
contained here to provide debugging information because the JDBC driver should throw
this exception when a data transfer problem is encountered.

Constructors

Constructor Additional Description

public DataTruncation(int
index, boolean parameter,
boolean read, int dataSize, int
transferSize)

Builds a Throwable
DataTruncation object with
the specified properties

Methods

Method Name Additional Description

public int getDataSize() Returns the number of bytes
that should have been
transferred

public int getIndex() Returns the index of the
column or parameter that was
interrupted

public boolean getParameter() Returns true if the truncated
value was a parameter, or
false if it was a column

public boolean getRead() Returns true if truncation
occurred on a read; false
means truncation occurred on
a write

public int getTransferSize() Returns the number of bytes
actually transferred

public class SQLException

This class extends java.lang.Exception. It is the responsibility of the JDBC driver to
throw this class when a problem occurs during an operation.

Constructors

These constructors are used to create an SQLException with the specified information. It
is normally not necessary to create an exception unless the developer is working on
creating a driver or higher level JDBC interface:

public SQLException()
public SQLException(String problem)
public SQLException(String problem, String SQLState)
public SQLException(String problem, String SQLState,
int vendorCode)

Methods

Method Name Additional Description

public int getErrorCode() Returns the error code that
was part of the thrown
exception

public SQLException
getNextException()

Returns the next exception as
an SQLException object

public String getSQLState() Returns the SQL state that
was part of the thrown
exception

public synchronized void
setNextException
(SQLException excp)

Sets the next exception as
excp for the SQLException
object

public class SQLWarning

This class extends SQLException. It is the responsibility of the JDBC driver to throw
this class when a problem occurs during an operation.

Constructors

These constructors build an SQLWarning object with the specified information. It is
normally not necessary to create an SQLWarning unless the developer is working on
creating a driver or higher level JDBC interface:

public SQLWarning()
public SQLWarning(String problem)

public SQLWarning(String problem, String SQLstate)
public SQLWarning(String problem, String SQLstate, int
vendorCode)

Methods

Method Name Additional Description

public SQLWarning
getNextWarning()

Returns an SQLWarning object
that contains the next
warning

public void
setNextWarning(SQLWarning
warn)

Sets the next SQLWarning
warning warn for the
SQLWarning object

	Chapter 1�JDBC: Databases The Java Way!
	What Is The JDBC?
	The JDBC Structure
	ODBC’s Part In The JDBC
	Summary

	Chapter 2�SQL 101
	The Relational Model And SQL
	Understanding The Basics
	Putting It Into Perspective: Schema And Catalog
	Introducing Keys
	Using Multiple Tables And Foreign Keys

	Data Definition Language
	Declaring Domains
	Performing Checks
	Creating Tables
	Manipulating Tables

	Data Maintenance Language
	Data Query Language
	Coming Up Next

	Chapter 3�Using JDBC Drivers
	Quick Start Guide
	Installing java.sql.*
	Installing java.sql.*
	Registering And Calling JDBC Drivers
	The sql.drivers Property
	There’s Always A Class For A Name
	Just Do It

	JDBC URL And The Connection
	Using ODBC Drivers
	Installing The JDBC-ODBC Bridge
	Setting Up ODBC Drivers

	Summary

	Chapter 4�The Interactive�SQL Applet
	Your First JDBC Applet
	The Blueprint

	Getting A Handle On The JDBC Essentials: The Complete Applet Source Code
	The Look Of The Applet
	Handling Events
	Opening The Connection
	No Guts, No Glory: Executing Queries And Processing Results
	Wrapping It Up

	The HTML File That Calls The Applet
	The Final Product
	Coming Up Next

	Chapter 5�Accessing ODBC Services Using JDBC
	Bridge Requirements
	The Bridge Is Great, But...
	The ODBC URL
	JDBC To ODBC Calls: A Roadmap

	Chapter 6�SQL Data Types In Java And ORM
	Mapping SQL Data To Java
	ResultSetMetaData
	Understanding The Object Relation Model
	Mapping A Table Into A Java Object

	Summary

	Chapter 7�Working With Query Results
	A Basic Java Object For Storing Results
	Showing The Results

	Charting Your Data
	Summary

	Chapter 8�The IconStore Multimedia JDBC Application
	IconStore Requirements
	Building The Database
	Application Essentials
	Writing The main Method
	Establishing The Database Connection
	Creating The Menu
	Creating The Lists
	Handling Events
	Saving The Image

	Summary

	If you would like to take the IconStore applicati
	Database Server Security
	Rooting Out The Packet Sniffers
	Web Server CGI Holes

	Finding A Solution
	Applet Security: Can I Trust You?
	The Applet Security Manager
	I’m A Certified Applet

	Summary

	Chapter 10�Writing Database Drivers
	The JDBC Driver Project: SimpleText
	SimpleText SQL Grammar
	SimpleText File Format

	The DriverManager
	JDBC Exception Types
	JDBC Data Types
	Character Data: CHAR, VARCHAR, And LONGVARCHAR
	Exact Numeric Data: NUMERIC And DECIMAL
	Binary Data: BINARY, VARBINARY, And LONGVARBINARY
	Boolean Data: BIT
	Integer Data: TINYINT, SMALLINT, INTEGER, And BIGINT
	Floating-Point Data: REAL, FLOAT, And DOUBLE
	Time Data: DATE, TIME, And TIMESTAMP

	New Data Classes
	Numeric
	Date
	Time
	Timestamp

	Native Drivers: You’re Not From Around Here, Are
	Implementing Interfaces
	Tracing
	Turning On Tracing
	Writing Tracing Information
	Checking For Tracing

	Data Coercion
	Escape Clauses
	Date, Time, And Timestamp
	Scalar Functions
	LIKE Predicate Escape Characters
	Outer Joins
	Procedures

	The JDBC Interfaces
	Driver
	Connection
	DatabaseMetaData
	Statement
	PreparedStatement
	ResultSet
	ResultSetMetaData

	Summary

	Chapter 11�Internet Database Issues: Middleware
	Connectivity Issues Involved With Database Access
	Advantages Of Middleware
	Disadvantages Of Middleware

	The Application Server: A Complete Example With Code
	The Client: A Complete Example With Code
	Summary

	Chapter 12�The JDBC API
	Classes
	public class Date
	public class DriverManager
	public class DriverPropertyInfo
	public final class Numeric
	public class Time
	public class TimeStamp
	public class Types

	Interfaces
	public interface CallableStatement
	public interface Connection
	public interface DatabaseMetaData
	public interface Driver
	public interface PreparedStatement
	public interface ResultSet
	public interface ResultSetMetaData
	public interface Statement

	Exceptions
	public class DataTruncation
	public class SQLException
	public class SQLWarning

